This paper proposes a cloud-based software architecture for fully automated point-of-care molecular diagnostic devices. The target system operates a cartridge consisting of an extraction body for DNA extraction and a PCR chip for amplification and fluorescence detection. To facilitate control and monitoring via the cloud, a socket server was employed for fundamental molecular diagnostic functions such as DNA extraction, amplification, and fluorescence detection. The user interface for experimental control and monitoring was constructed with the RESTful application programming interface, allowing access from the terminal device, edge, and cloud. Furthermore, it can also be accessed through any web-based user interface on smart computing devices such as smart phones or tablets. An emulator with the proposed software architecture was fabricated to validate successful operation.
We propose a label-free system that estimated the concentration of DNA droplets in sub-microliter volume based on the impedance measurement method. A USB oscilloscope with a built-in function generator was employed to reduce the system size instead of existing lock-in amplifiers or network analyzers. An electrode pair was fabricated with patterns on a printed circuit board (PCB). To minimize the measurement variation of the impedance between experiments, the electrode was made hydrophilic and the periphery of the electrode was blocked with a hydrophobic substance to prevent the droplet from spreading. For this purpose, the hydrophilicities of gold, tin, and silver coatings available in the PCB fabrication process and the hydrophobicities of various materials were investigated to select the most hydrophilic material to be used for the electrode coating. The proposed system was evaluated with various concentrations of saline solution and Chlamydia trachomatis DNA. Multiple measurements for a day experiment were performed for several days to investigate the precision of the proposed system. The measurement coefficient of variation (CV) of the proposed system was less than 3.7% for saline solution and 1.8% for DNA solution, showing that the proposed system is sufficiently precise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.