The spray-induced mixing characteristics and thermal decomposition of aqueous urea solution into ammonia have been studied to design optimum sizes and geometries of the mixing chamber in SCR (Selective Catalytic Reduction) system. The cold flow tests about the urea-injection nozzle were performed to clarify the parameters of spray mixing characteristics such as mean diameter and velocity of drops and spray width determined from the interactions between incoming air and injected drops. Discrete particle model in Fluent code was adopted to simulate spray-induced mixing process and the experimental results on the spray characteristics were used as input data of numerical calculations. The simulation results on the spray-induced mixing were verified by comparing the spray width extracted from the digital images with the simulated particle tracks of injected drops. The single kinetic model was adopted to predict thermal decomposition of urea solution into ammonia and solved simultaneously along with the verified spray model. The hot air generator was designed to match the flow rate and temperature of the exhaust gas of the real engines. The measured ammonia productions in the hot air generator were compared with the numerical predictions and the comparison results showed good agreements. Finally, we concluded that the design capabilities for sizing optimum mixing chamber were established.
A vacuum-sealed miniature X-ray tube based on a carbon nanotube field-emission electron source has been demonstrated. The diameter of the X-ray tube is 10 mm; the total length of the tube is 50 mm, and no external vacuum pump is required for the operation. The maximum tube voltage reaches up to 70 kV, and the X-ray tube generates intense X-rays with the air kerma strength of 108 Gy·cm2 min−1. In addition, X-rays produced from the miniature X-ray tube have a comparatively uniform spatial dose distribution.
Compared with manual microscopy, the two automated sediment analyzers tested in this study showed satisfactory analytical performances for RBC, WBC, and EPI. However, for other urine sediment particles confirmation by visual microscopy is still required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.