The present study investigated the immunomodulatory properties of four different medicinal plants in a cyclophosphamide-treated Balb/c mouse model. One of the four plants, Ulmus macrocarpa, showed partial resistance against immune suppression induced by cyclophosphamide. The bark of U. macrocarpa, commonly known as the Chinese elm, has been used as a pharmaceutical material in Korean traditional medicine to treat bacterial inflammation and induce wound healing. In this study, water extract of U. macrocarpa, named DEU-7, was used for its immunomodulating functional activity. DEU-7 increased the weight of the spleen and the number of splenocytes but did not significantly affect the liver, kidney, and thymus in vivo. A splenocyte viability assay confirmed that DEU-7 influenced ex vivo splenocyte survival. DEU-7 also increased the levels of cytokines, such as IL-2 and IL-4, and immunoglobulins, such as IgM, IgG, and IgA. These results indicated that DEU-7 is involved in the activation of T and B lymphocytes. In addition, DEU-7 was able to maintain the production of cytokines, such as TNF-α, IL-12, and IFN-γ, in the condition of cyclophosphamide-induced immune suppression, suggesting that DEU-7 activated innate immune cells, even under immune suppression. We concluded that DEU-7 aids immunological homeostasis, thereby preventing immune suppression, and aids both innate and adaptive immune response by maintaining the levels of various cytokines and immunoglobulins. Consequently, it is worth investigating the potential of DEU-7 as a supplemental source for immune-enhancing agents.
An extract of Ulmus macrocarpa Hance, commonly known as the large-fruited elm, has been prescribed as a traditional medicine. In this study, we aimed to investigate the cellular immune effects of U. macrocarpa stem cortex extracts on cyclophosphamide (CY)-treated splenocytes and mice. A methanol extract showed an improved survival rate of splenocytes after 72 h. The extract was successively partitioned with dichloromethane, ethyl acetate, n-butanol, and water; and the fractions so obtained were also examined for their proliferative activity. Among them, the water fraction of U. macrocarpa showed the highest proliferation of splenocytes and was used throughout the present study. We tested the survival rate of splenocytes through dosedependent treatment of CY and the suppression of the survival effect by CY was recovered by treatment with the water extract of U. macrocarpa. To determine the mechanism involved, we examined the expression of B-cell lymphoma-extra large (Bcl-xL) anti-apoptotic protein. CY decreased Bcl-xL protein levels in resting splenocyte cultures, whereas splenocytes were exposed to water extracts of U. macrocarpa in the presence of CY; however, elevations in Bcl-xL were observed at 96 h. Mice splenocytes treated with water extract of U. macrocarpa for cellular immunity showed an increase in the activity of the mixed lymphocyte reaction (MLR), cytotoxic T lymphocytes (CTLs), and natural killer (NK) cells. In addition, mice receiving a water extract of U. macrocarpa recovered the CTL, NK, and MLR activities suppressed by CY administration. Consequently, U. macrocarpa improves the cell-mediated immune response and provides an insight on cell-based tonic materials. ARTICLE HISTORY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.