Key Points Question Can deep learning algorithms achieve a performance comparable with that of ophthalmologists on multidimensional identification of retinopathy of prematurity (ROP) using wide-field retinal images? Findings In this diagnostic study of 14 108 eyes of 8652 preterm infants, a deep learning–based ROP screening platform could identify retinal images using 5 classifiers, including image quality, stages of ROP, intraocular hemorrhage, preplus/plus disease, and posterior retina. The platform achieved an area under the curve of 0.983 to 0.998, and the referral system achieved an area under the curve of 0.9901 to 0.9956; the platform achieved a Cohen κ of 0.86 to 0.98 compared with 0.93 to 0.98 by the ROP experts. Meaning Results suggest that a deep learning platform could identify and classify multidimensional ROP pathological lesions in retinal images with high accuracy and could be suitable for routine ROP screening in general and children’s hospitals.
ObjectiveTo develop and validate a real-world screening, guideline-based deep learning (DL) system for referable diabetic retinopathy (DR) detection.DesignThis is a multicentre platform development study based on retrospective, cross-sectional data sets. Images were labelled by two-level certificated graders as the ground truth. According to the UK DR screening guideline, a DL model based on colour retinal images with five-dimensional classifiers, namely image quality, retinopathy, maculopathy gradability, maculopathy and photocoagulation, was developed. Referable decisions were generated by integrating the output of all classifiers and reported at the image, eye and patient level. The performance of the DL was compared with DR experts.SettingDR screening programmes from three hospitals and the Lifeline Express Diabetic Retinopathy Screening Program in China.Participants83 465 images of 39 836 eyes from 21 716 patients were annotated, of which 53 211 images were used as the development set and 30 254 images were used as the external validation set, split based on centre and period.Main outcomesAccuracy, F1 score, sensitivity, specificity, area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), Cohen’s unweighted κ and Gwet’s AC1 were calculated to evaluate the performance of the DL algorithm.ResultsIn the external validation set, the five classifiers achieved an accuracy of 0.915–0.980, F1 score of 0.682–0.966, sensitivity of 0.917–0.978, specificity of 0.907–0.981, AUROC of 0.9639–0.9944 and AUPRC of 0.7504–0.9949. Referable DR at three levels was detected with an accuracy of 0.918–0.967, F1 score of 0.822–0.918, sensitivity of 0.970–0.971, specificity of 0.905–0.967, AUROC of 0.9848–0.9931 and AUPRC of 0.9527–0.9760. With reference to the ground truth, the DL system showed comparable performance (Cohen’s κ: 0.86–0.93; Gwet’s AC1: 0.89–0.94) with three DR experts (Cohen’s κ: 0.89–0.96; Gwet’s AC1: 0.91–0.97) in detecting referable lesions.ConclusionsThe automatic DL system for detection of referable DR based on the UK guideline could achieve high accuracy in multidimensional classifications. It is suitable for large-scale, real-world DR screening.
Supplemental figure 1. Publication bias analysis based on 16 studies •Supplemental figure 2. Scatter matrix of likelihood ratio of 16 studies •Supplemental table 1. Sample size of various levels •Supplemental table 2. Assessment of quality and summarizing the findings using the GRADE approach Supplemental figure 1. Publication bias analysis based on 16 studies. There is no publication bias (P = 0.15) among the 16 eligible studies
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.