In order to elucidate the relationship between androgens and the function of the muskrat (Ondatra zibethicus) scented glands during the breeding season, we investigated immunolocalization of steroidogenic enzymes P450scc, 3βHSD and P450c17 in the muskrat testes and scented glands. Nine adult muskrats were obtained in March (n=3), May (n=3) and July (n=3) 2010. Steroidogenic enzymes were immunolocalized using polyclonal antisera raised against bovine adrenal P450scc, human placental 3βHSD and porcine testicular P450c17. Histologically, all types of spermatogenic cells including mature-phase spermatozoa in seminiferous tubules were observed in all testes. Glandular cells, interstitial cells, epithelial cells and excretory tubules were identified in scented glands during the breeding season. P450scc, 3βHSD and P450c17 were only identified in Leydig cells during the breeding season; P450scc and P450c17 were observed in glandular cells of scented glands, however, 3βHSD was not found in scented glands during the breeding season. These novel findings provide the first evidence showing that scented glands of the muskrats are capable of locally synthesizing androgens and androgens acting via an endocrine, autocrine or paracrine manner may play an important role in scented gland function during the breeding season.
Background and purpose: Selective oestrogen receptor (ER) modulators (SERMs) are of great value in the treatment of breast cancer and osteoporosis. The aim of this study was to characterize pharmacologically a new class of SERMs synthesized based on the core structure of raloxifene. Experimental approach: Competitive receptor binding and luciferase-based reporter methods were used to study the bioactivities of raloxifene analogues, followed by efficacy determination in breast cancer cell proliferation assay. ER antagonist effects were investigated in female rats by measuring uterine and mammary gland growth, using wet weight, BrdU incorporation and terminal end bud (TEB) as indicators. Key results: Five analogues, belonging to two different structural series and display higher binding affinities for ERa than ERb were functionally evaluated. One such analogue, Y134, exhibited potent antagonist activity at ERs in CV-1 cells cotransfected with plasmids containing ERa or ERb and oestrogen-response element-driven luciferase. The estimated IC 50 value was 0.52 nM for ERa and 2.94 nM for ERb, comparable to that of raloxifene. Little cytotoxicity was observed at Y134 concentrations below 10 mM. Y134 suppressed oestrogen-stimulated proliferation of ER-positive human breast cancer MCF-7 and T47D cells. At an identical dose, administered to ovariectomized rats, Y134 was more effective than raloxifene at arresting oestrogen-induced outgrowth of TEB and mammary gland DNA synthesis, but their inhibitory effects on the uterus were comparable. Conclusions and Implications: Y134 is a potent ER antagonist with better mammary gland selectivity than raloxifene and shows potential for development as a new SERM for therapeutic use.
The Chinese brown frog (Rana dybowskii) is a special amphibian with one unique physiological phenomenon, which is that its oviduct expands prior to hibernation, instead of during the breeding period. In this study, we investigate the localization and expression level of PPARγ2, leptin and leptin receptor proteins in oviduct of Rana dybowskii during breeding period and pre-hibernation. There were significant variations in oviductal weight and size, with values much lower in the breeding period than in pre-hibernation. PPARγ2 was observed in stromal and epithelial cells in both periods. Leptin was immunolocalized in epithelial cells in both periods, whereas leptin receptor was detected only in stromal cells. Consistently, the protein levels of PPARγ2, leptin and leptin receptor were higher in pre-hibernation as compared to the breeding period. These results suggested that oviduct was the target organ of leptin, which may play an important paracrine role in regulating the oviductal hypertrophy during prehibernation.
One specific physiological phenomenon of Chinese brown frog (Rana dybowskii) is that its oviduct expands prior to hibernation instead of expanding during the breeding period. In this study, we investigated the expression of P450arom and estrogen receptors α and β (ERα and ERβ) in the oviduct of Rana dybowskii during the breeding period and prehibernation. The results of the present study showed that there were significant differences in both oviductal weight and size with values markedly higher in prehibernation than in the breeding period. P450arom was observed in stromal tissue in both the breeding period and prehibernation. ERα was expressed in stromal tissue and epithelial cells in both periods, whereas ERβ could not be detected. The mean protein and mRNA levels of P450arom and ERα were significantly higher in prehibernation as compared to the breeding period. Besides, oviductal content of 17β-estradiol was also higher in prehibernation than in the breeding period. These results suggested that estrogen may play autocrine/paracrine roles mediated by ERα in regulating the oviductal hypertrophy during prehibernation.
During mammary gland involution, the epithelial mesenchymal transition (EMT) process plays an important role in tissue remodelling and in the termination of milk production. Transforming growth factor β (TGFβ) has been known as a central inducer to EMT and contributor to the mammary gland involution. However, the whole mechanism has accomplished the EMT process in mammary gland is still unclear. Here, we show that arachidonic acid, one of the major products in milk, is new player to control the EMT together with TGFβ during mammary gland involution. Firstly, we observed decrease in CDH1 (epithelial marker gene) expression and increases in VIM and TWIST1 (mesenchymal marker genes), TGFB1, and PLCG2 (arachidonic acid synthesis gene) at involution. In epithelial cells culture experiments, depletion of lactogenic hormones to mimic the involution induced TGFβ1 and PLCG2 expressions. Treatment with arachidonic acid in epithelial cells increased VIM and TWIST1 expressions without decrease of CDH1 expression, while TGFβ1 decreased CDH1 and increased VIM and TWIST1; more importantly, TGFβ1 induced the expression of PLCG2, but arachidonic acid did not induce the expression of TGFB1. Finally, arachidonic acid accelerated the TGFβ1 increasing VIM and TWIST1 expressions, meanwhile arachidonic acid synthase inhibitor partially blocked the TGFβ1 increasing VIM and TWIST1 expressions. In conclusion, TGFβ1 stimulates arachidonic acid synthesis and the arachidonic acid has a function to postulate the EMT process together with TGFβ1 during mammary gland involution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.