High-resolution deconvolution of bulk gene expression profiles is pivotal to characterize the complex cellular make-up of tissues, such as tumor microenvironment. Single-cell RNA-seq provides reliable prior knowledge for deconvolution, however, a comprehensive statistical model is required for efficient utilization due to the inherently variable nature of gene expression. We introduce BLADE (Bayesian Log-normAl Deconvolution), a comprehensive probabilistic framework to estimate both cellular make-up and gene expression profiles of each cell type in each sample. Unlike previous comprehensive statistical approaches, BLADE can handle >20 cell types thanks to the efficient variational inference. Throughout an intensive evaluation using >700 datasets, BLADE showed enhanced robustness against gene expression variability and better completeness than conventional methods, in particular to reconstruct gene expression profiles of each cell type. All-in-all, BLADE is a powerful tool to unravel heterogeneous cellular activity in complex biological systems based on standard bulk gene expression data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.