S and N co-doped, few-layered graphene oxide is synthesized by using pyrimidine and thiophene as precursors for the application of the oxygen reduction reaction (ORR). The dual-doped catalyst with pyrrolic/graphitic N-dominant structures exhibits competitive catalytic activity (10.0 mA cm(-2) kinetic-limiting current density at -0.25 V) that is superior to that for mono N-doped carbon nanomaterials. This is because of a synergetic effect of N and S co-doping. Furthermore, the dual-doped catalyst also shows an efficient four-electron-dominant ORR process, which has excellent methanol tolerance and improved durability in comparison to commercial Pt/C catalysts.
Recently, many studies have shown the potential use of circulating exosomes as novel biomarkers for monitoring and predicting a number of complex diseases, including cancer. However, reliable and cost-effective detection of exosomes in routine clinical settings, still remain a difficult task, mainly due to the lack of adequately easy and fast assay platforms. Therefore, we demonstrate here the development of a visible and simple method for the detection of exosomes by integrating single-walled carbon nanotubes that being excellent water solubility (s-SWCNTs) and aptamer. Aptamers, specific to exosomes transmembrane protein CD63, are absorbed onto the surface of s-SWCNTs and improve the minic peroxidase activity of s-SWCNTs, which can efficiently catalyze HO-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) and lead to a change from colorless to blue in solution. However, after adding exosomes, the aptamers are bound with CD63, leaving from the surface of s-SWCNTs through conformational changes, which results the color of solution from deep to moderate, and this can be observed by the naked eye and monitored by UV-vis spectrometry. Under optimal conditions, the linear range of exosomes is estimated to be 1.84×10 to 2.21×10 particles/μL with a detection of limit (LOD) of 5.2×10 particles/μL. Consequently, a visible and simple approach detecting exosomes is successfully constructed. Moreover, this proposed colorimetric aptasensor can be universally applicable for the detection of other targets by simple change the aptamer.
Electrode materials based on conversion reactions with lithium ions have shown much higher energy density than those based on intercalation reactions. Here, nanocubes of a typical metal oxide (Co3O4) were grown on few-layer graphene, and their electrochemical lithiation and delithiation were investigated at atomic resolution by in situ transmission electron microscopy to reveal the mechanism of the reversible conversion reaction. During lithiation, a lithium-inserted Co3O4 phase and a phase consisting of nanosized Co-Li-O clusters are identified as the intermediate products prior to the subsequent formation of Li2O crystals. In delithiation, the reduced metal nanoparticles form a network and breakdown into even smaller clusters that act as catalysts to prompt reduction of Li2O, and CoO nanoparticles are identified as the product of the deconversion reaction. Such direct real-space, real-time atomic-scale observations shed light on the phenomena and mechanisms in reaction-based electrochemical energy conversion and provide impetus for further development in electrochemical charge storage devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.