Systemic lupus erythematosus (SLE) is a multisystem, autoimmune disease that predominantly affects women. Previous findings that duplicated Toll-like receptor 7 (Tlr7) promotes lupus-like disease in male BXSB mice prompted us to evaluate TLR7 in human SLE. By using a candidate gene approach, we identified and replicated association of a TLR7 3′UTR SNP, rs3853839 (G/C), with SLE in 9,274 Eastern Asians (P combined = 6.5 × 10 −10 ), with a stronger effect in male than female subjects [odds ratio, male vs. female = 2.33 (95% CI = 1.64-3.30) vs. 1.24 (95% CI = 1.14-1.34); P = 4.1 × 10]. G-allele carriers had increased TLR7 transcripts and more pronounced IFN signature than C-allele carriers; heterozygotes had 2.7-fold higher transcripts of G-allele than C-allele. These data established a functional polymorphism in type I IFN pathway gene TLR7 predisposing to SLE, especially in Chinese and Japanese male subjects. functional polymorphism | disease susceptibility | autoimmunity | type I interferon S ystemic lupus erythematosus [SLE; Online Mendelian Inheritance in Man (OMIM) no. 152700] is a multisystem, autoimmune disease with strong genetic and environmental components (1). SLE predominantly affects women, with a female-to-male ratio of approximately 9:1. Male patients with SLE, although rare, tend to have more severe disease and poorer outcome (2), suggesting potential sex dimorphism in the disease development. Although the sex effect has often been attributed to sex hormones, the fact that XXY male subjects have approximately a 14-fold higher risk of developing SLE than 46 XY men indicates that X-linked genes may be risk factors for human SLE (3).Located at Xp22.2, Toll-like receptor 7 (TLR7; OMIM no. 300365) and its functionally related gene TLR8 (OMIM no. 300366) encode proteins that play critical roles in pathogen recognition and activation of innate immunity (4). They recognize endogenous RNA-containing autoantigens and induce the expression of type I IFN, a pivotal cytokine in the pathogenesis of SLE (5). In lupus-prone BXSB mice, the translocation of a segmental duplication of X chromosome to Y chromosome creates the Y-linked autoimmune accelerator (Yaa) locus, which was associated with autoreactive B cell responses to RNA-related antigens and exacerbation of glomerulonephritis in male mice (6). Although translocated X chromosome segment in Yaa may contain as many as 16 genes, the major gene for causation of the autoimmune phenotypes was identified to be TLR7 (7), making it a potential susceptibility gene for SLE. By using a candidate gene approach, we report herein that a functional polymorphism in 3′UTR of TLR7 is associated with SLE in Chinese and Japanese populations, with a stronger effect in male than female subjects. ResultsDiscovery and Replication of the Association of a TLR7 3′UTR SNP with SLE in Eastern Asian Population. We genotyped 27 SNPs from the TLR7-TLR8 region (12 in TLR7 and 15 in TLR8) in 1,434 SLE cases and 1,591 control subjects of Eastern Asian ancestry using the Beadstation Infinium II...
Toll-like receptors (TLRs), as innate immunity sensors, play critical roles in immune responses. Six SNPs of TLR3, TLR7, and TLR8 were genotyped to determine their associations with systemic lupus erythematosus (SLE) and clinical manifestations of SLE. TLR7 SNP rs3853839 was independently associated with SLE susceptibility in females (G vs. C: p = 0.0051). TLR7 rs3853839-G (G vs. C: p = 0.0100) and TLR8 rs3764880-G (recessive model: p = 0.0173; additive model: p = 0.0161) were associated with pericardial effusion in females relative to healthy females. Anti-SSA positive cases were more likely to have the dominant TLR7 rs179010-T allele than normal controls (p = 0.0435). TLR3 rs3775296-T was associated with photosensitivity (p = 0.0020) and anemia (p = 0.0082). The “G-G” haplotype of TLR7 rs3853839 and TLR8 rs3764880 increased risk of SLE in females (age adjusted p = 0.0032). These findings suggest that TLR variations that modify gene expression affect risk for SLE susceptibility, clinical phenotype development, and production of autoantibodies.
Objective. To investigate the possible association of the Fc␥ receptor IIb (Fc␥RIIb) Ile/Thr187 transmembrane domain polymorphism, which significantly affects receptor signaling, with susceptibility to systemic lupus erythematosus (SLE) in Taiwanese patients.Methods. We used matrix-assisted laser desorption ionization؊time-of-flight mass spectrometry to genotype 351 Taiwanese SLE patients and 372 age-and sex-matched healthy individuals from the same geographic area. Allele frequencies and genotype distributions were compared between the patients and controls, both as an aggregate and as stratified by sex, autoantibody profile, and clinical parameters. A combined analysis was conducted to assess the FCGR2B Thr187 allele as a common risk factor in different ethnic populations.Results. The minor Thr187 allele was significantly associated with SLE in Taiwanese Fc␥RIIb exhibits several apparent inhibitory activities in modulating the immune system, but not all the inhibitory activities are dependent on its distinct ITIM. Coengagement of Fc␥RIIb and other receptors containing an immunoreceptor tyrosine-based activation motif (ITAM) leads to tyrosine phosphorylation of the ITIM by Lyn kinase, recruitment of SH2 domain-containing inositol phosphatase (SHIP), inhibition of ITAMtriggered calcium mobilization, and arrest of cellular proliferation (3). Inhibition of calcium mobilization requires the phosphatase activity of SHIP to hydrolyze phosphatidylinositol 3,4,5-trisphosphate (PIP 3 ), and the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.