The purpose of this study is to evaluate the various control parameters of a modeled fast non-local means (FNLM) noise reduction algorithm which can separate color channels in light microscopy (LM) images. To achieve this objective, the tendency of image characteristics with changes in parameters, such as smoothing factors and kernel and search window sizes for the FNLM algorithm, was analyzed. To quantitatively assess image characteristics, the coefficient of variation (COV), blind/referenceless image spatial quality evaluator (BRISQUE), and natural image quality evaluator (NIQE) were employed. When high smoothing factors and large search window sizes were applied, excellent COV and unsatisfactory BRISQUE and NIQE results were obtained. In addition, all three evaluation parameters improved as the kernel size increased. However, the kernel and search window sizes of the FNLM algorithm were shown to be dependent on the image processing time (time resolution). In conclusion, this work has demonstrated that the FNLM algorithm can effectively reduce noise in LM images, and parameter optimization is important to achieve the algorithm’s appropriate application.
Oropharyngeal dysphagia is a disorder that can make swallowing difficult and reduce the quality of life. Recently, the number of patients with swallowing difficulty has been increasing; however, no comprehensive treatment for such patients has been developed. Various experimental animal models that mimic oropharyngeal dysphagia have been developed to identify appropriate treatments. This review aims to summarize the experimentally induced oropharyngeal dysphagia rodent models that can be used to provide a pathological basis for dysphagia. The selected studies were classified into those reporting dysphagia rodent models showing lingual paralysis by hypoglossal nerve injury, facial muscle paralysis by facial nerve injury, laryngeal paralysis by laryngeal and vagus nerve injury, and tongue dysfunction by irradiation of the head and neck regions. The animals used in each injury model, the injury method that induced dysphagia, the screening method for dysphagia, and the results are summarized. The use of appropriate animal models of dysphagia may provide adequate answers to biological questions. This review can help in selecting a dysphagia animal system tailored for the purpose of providing a possible solution to overcome dysphagia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.