Macrophage-specific Abca1 knock-out (Abca1؊M/؊M ) mice were generated to determine the role of macrophage ABCA1 expression in plasma lipoprotein concentrations and the innate immune response of macrophages. Plasma lipid and lipoprotein concentrations in chow-fed Abca1 ؊M/؊M and wild-type (WT) mice were indistinguishable. Compared with WT macrophages, Abca1 ؊M/؊M macrophages had a >95% reduction in ABCA1 protein, failed to efflux lipid to apoA-I, and had a significant increase in free cholesterol (FC) and membrane lipid rafts without induction of endoplasmic reticulum stress. Lipopolysaccharide (LPS)-treated Abca1 ABCA1 (ATP-binding cassette transporter A1) is a plasma membrane protein that is widely expressed throughout the body (1, 2) and functions as a primary gatekeeper for eliminating excess free cholesterol (FC) 2 from tissues by effluxing cellular FC and phospholipid (PL) to lipid-free apoA-I, resulting in the formation of nascent high density lipoprotein (HDL) particles (3, 4). The nascent discoid-shaped HDL then undergoes a maturation process that involves additional lipid acquisition and conversion of FC to cholesteryl ester (CE) by lecithin:cholesterol acyltransferase to become mature spherical plasma HDL. Mutations that inactivate the human ABCA1 gene result in Tangier disease, which is characterized by extremely low HDL cholesterol concentrations, mildly elevated plasma trigelyceride levels, and accumulation of cholesterol in macrophages (5-10). Targeted deletion of Abca1 in mice and a natural mutation of Abca1 in the Wisconsin hypoalpha mutant chicken recapitulate the Tangier plasma lipid phenotype, supporting the essential role of ABCA1 in HDL formation (11-15). Although ABCA1 is expressed in many cells in the body, recent studies in hepatocyte-and intestinal epithelium-specific Abca1 knock-out mice suggest that the liver contributes 70 -80% of the plasma HDL pool, whereas the intestine contributes 20 -30% (16, 17). Although mobilization of excess FC from macrophages is dependent on ABCA1 and results in the formation of nascent HDL particles, transplantation of bone marrow from Abca1 knock-out (KO) mice into wild-type (WT) mice or transplantation of WT marrow into Abca1 KO recipients has little effect on plasma HDL concentrations, suggesting that macrophage ABCA1 expression has minimal impact on plasma HDL concentrations (18,19).Macrophages are a primary cell type involved in innate immunity. Although macrophage ABCA1 has a minimal impact on plasma lipid levels, there is evidence that its activity modulates the inflammatory response of macrophages to pathogen-associated molecules such as lipopolysaccharide
We investigated the in vivo metabolic fate of preb HDL particles in human apolipoprotein A-I transgenic (hA-I Tg ) mice. Pre-b HDL tracers were assembled by incubation of [125 I]tyramine cellobiose-labeled apolipoprotein A-I (apoA-I) with HEK293 cells expressing ABCA1. Radiolabeled pre-b HDLs of increasing size (pre-b1, -2, -3, and -4 HDLs) were isolated by fast-protein liquid chromatography and injected into hA-I Tg -recipient mice, after which plasma decay, in vivo remodeling, and tissue uptake were monitored. Pre-b2, -3, and -4 had similar plasma die-away rates, whereas pre-b1 HDL was removed 7-fold more rapidly. Radiolabel recovered in liver and kidney 24 h after tracer injection suggested increased (P , 0.001) liver and decreased kidney catabolism as pre-b HDL size increased. In plasma, pre-b1 and -2 were rapidly (,5 min) remodeled into larger HDLs, whereas pre-b3 and -4 were remodeled into smaller HDLs. Pre-b HDLs were similarly remodeled in vitro with control or LCAT-immunodepleted plasma, but not when incubated with phospholipid transfer protein knockout plasma. Our results suggest that initial interaction of apoA-I with ABCA1 imparts a unique conformation that partially determines the in vivo metabolic fate of apoA-I, resulting in increased liver and decreased kidney catabolism as pre-b HDL particle size
Egg yolk contains bioactive components that improve plasma inflammatory markers and HDL profiles in metabolic syndrome (MetS) under carbohydrate restriction. We further sought to determine whether egg yolk intake affects peripheral blood mononuclear cell (PBMC) inflammation and cholesterol homeostasis in MetS, as HDL and its associated lipid transporter ATP-binding cassette transporter A1 (ABCA1) reduce the inflammatory potential of leukocytes through modulation of cellular cholesterol content and distribution. Thirty-seven men and women classified with MetS consumed a moderate carbohydrate-restricted diet (25%–30% of energy) for 12 weeks, in addition to consuming either three whole eggs per day (EGG) or the equivalent amount of yolk-free egg substitute (SUB). Interestingly, lipopolysaccharide-induced PBMC IL-1β and TNFα secretion increased from baseline to week 12 in the SUB group only, despite increases in PBMC toll-like receptor 4 (TLR4) mRNA expression in the EGG group. Compared to baseline, ABCA1 and 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase mRNA expression increased by week 12 in the EGG group only, whereas changes in PBMC total cholesterol positively correlated with changes in lipid raft content. Together, these findings suggest that intake of whole eggs during carbohydrate restriction alters PBMC inflammation and cholesterol homeostasis in MetS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.