In this recent work, a ground penetrating radar (GPR) technique was proposed to evaluate the deteriorated depth of concrete bridge decks with asphalt overlays in the Korea expressway network. Air-coupled GPR was utilized in the measurement of the relative permittivity of concrete on bridge decks with asphalt overlays and the electromagnetic (EM) wave attenuation of the concrete cover of top reinforcing bars (rebars) in the pilot bridge in public service. In addition, 13 core samples were obtained from the bridge deck to carry out a detailed survey that includes visual inspection of the deterioration and measurement of chloride content with depth. The validity of the GPR technique was examined by comparing it with the results of the field investigation. Moreover, the correlation of the deteriorated depth with either the relative permittivity or EM wave attenuation was established. Results show that a GPR signal analysis method based on a dual-criteria (relative permittivity and EM wave attenuation) is more effective in analyzing the deterioration characteristics and evaluating the deteriorated depth of concrete bridge decks with asphalt overlay compared to the analysis method based on one of the two GPR properties. Results of the field test are considered to be significant wherein it establishes a relationship between the GPR property and deterioration characteristics of the bridge decks. Moreover, results show the practical applicability of the GPR technique in evaluating the deteriorated depth of the bridge decks with asphalt overlay.
The purposes of this study were to investigate the seasonal variations in the relative permittivity of actual concrete bridge decks of various ages on Korea expressways, and to propose a practical way to calibrate two critical effects, to assess the condition of the concrete bridge decks with better accuracy. For these purposes, fifty-three actual concrete bridge decks on Korea expressways were scanned using an air-coupled ground penetrating radar (GPR) system, and the relative permittivity of the concrete was evaluated from the GPR data in the field. A statistical analysis showed that the relative permittivity of the concrete bridge decks in Korea are closely correlated with seasonal changes and concrete ages. For concrete bridge decks aged 10 years or older, the effect of concrete age was not as significant as that of relative humidity of the air on relative permittivity of concrete. Based on the results, a simple calibration process was proposed to suppress the effects of seasonal variation and age of concrete on the measured relative permittivity of the concrete decks on actual bridges. As will be discussed, the resulting relative permittivity method produced better agreement with the current condition of the concrete bridge decks as determined by visual inspection and other complementary methods (energy attenuation of GPR signals and corrosion potential measurements) than without the calibration process.
Fire in a tunnel or an underground structure is characterized by a rise in temperature above 1000 °C in 5–10 min, which is due to the characteristics of the closed space. The Permanent International Association of Road Congresses has reported that serious damage can occur in an underground structure as a consequence of high temperatures of up to 1400 °C when a fire accident involving a tank lorry occurs in an underground space. In these circumstances, it is difficult to approach the scene and extinguish the fire, and the result is often casualties and damage to facilities. When a concrete structure is exposed to a high temperature, spalling or dehydration occurs. As a result, the cross section of the structure is lost, and the structural stability declines to a great extent. Furthermore, the mechanical and thermal properties of concrete are degraded by the temperature hysteresis that occurs at high temperatures. Consequently, interest in the fire safety of underground structures, including tunnels, has steadily increased. This study conducted a fire simulation to analyze the effects of a fire caused by dangerous-goods vehicles on the tunnel structure. In addition, a fire exposure test of reinforced-concrete members was conducted using the Richtlinien für die Ausstattung und den Betrieb von Straßentunneln (RABT) fire curve, which is used to simulate a tunnel fire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.