The biocatalysts for asymmetric reduction of aromatic ketones were successfully screened from soil samples polluted by substituted acetophenones. 12 strains could asymmetrically reduce acetophenone into phenethanol, while only strain YS62 possessed the best performance of reducing acetophenone into (S)-1-phenethanol. It was identified as Rhodotorula mucilaginosa based on phenotypic and genetics characteristics and it was used for further asymmetric reduction experiments of acetophenone as a new biocatalyst. R. mucilaginosa YS62 whole-cells could catalyze the asymmetric reduction of acetophenone (35 mM) into (S)-1-phenethanol (31.4 mM) with a conversion rate of 89.7% and enantiomeric excess (e.e.) of 99.9% under 60 g/L YS62 cell, pH 6.5 , 34°C for 30 h and 2% glucose as a co-substrate. These results have shown that R. mucilaginosa YS62 is a promising biocatalyst for the production of optically active phenylethanol derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.