Convolutional neural networks have recently demonstrated high-quality reconstruction for single-image superresolution. In this paper, we propose the Laplacian Pyramid Super-Resolution Network (LapSRN) to progressively reconstruct the sub-band residuals of high-resolution images. At each pyramid level, our model takes coarse-resolution feature maps as input, predicts the high-frequency residuals, and uses transposed convolutions for upsampling to the finer level. Our method does not require the bicubic interpolation as the pre-processing step and thus dramatically reduces the computational complexity. We train the proposed LapSRN with deep supervision using a robust Charbonnier loss function and achieve high-quality reconstruction. Furthermore, our network generates multi-scale predictions in one feed-forward pass through the progressive reconstruction, thereby facilitates resource-aware applications. Extensive quantitative and qualitative evaluations on benchmark datasets show that the proposed algorithm performs favorably against the state-of-the-art methods in terms of speed and accuracy.
In this paper, the problem of multi-target tracking with single camera in complex scenes is addressed. A new approach is proposed for multi-target tracking problem that learns from hierarchy of convolution features. First fast Region-based Convolutional Neutral Networks is trained to detect pedestrian in each frame. Then cooperate it with correlation filter tracker which learns target's appearance from pretrained convolutional neural networks. Correlation filter learns from middle and last convolutional layers to enhances targets localization. However correlation filters fail in case of targets full occlusion. This lead to separated tracklets (mini-trajectories) problem. So a post processing step is added to link separated tracklets with minimum-cost network flow. A cost function is used, that depends on motion cues in associating short tracklets. Experimental results on MOT2015 benchmark show that the proposed approach produce comparable result against state-of-the-art approaches. It shows an increase 4.5 % in multiple object tracking accuracy. Also mostly tracked targets is 12.9% vs 7.5% against state-of-the-art minimum-cost network flow tracker.
Abstract-We introduce a deep network architecture called DerainNet for removing rain streaks from an image. Based on the deep convolutional neural network (CNN), we directly learn the mapping relationship between rainy and clean image detail layers from data. Because we do not possess the ground truth corresponding to real-world rainy images, we synthesize images with rain for training. In contrast to other common strategies that increase depth or breadth of the network, we use image processing domain knowledge to modify the objective function and improve deraining with a modestly-sized CNN. Specifically, we train our DerainNet on the detail (high-pass) layer rather than in the image domain. Though DerainNet is trained on synthetic data, we find that the learned network translates very effectively to real-world images for testing. Moreover, we augment the CNN framework with image enhancement to improve the visual results. Compared with state-of-the-art single image deraining methods, our method has improved rain removal and much faster computation time after network training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.