Metabolites excreted by skin have a huge potential as disease biomarkers. However, due to the shortage of convenient sampling/analysis methods, the analysis of sweat has not become very popular in the clinical setting (pilocarpine iontophoresis being a prominent exception). In this report, a facile method for sampling and rapid chemical profiling of skin metabolites excreted with sweat is proposed. Metabolites released by skin (primarily the constituents of sweat) are collected into hydrogel (agarose) micropatches. Subsequently, they are extracted in an online analytical setup incorporating nanospray desorption electrospray ionization and an ion trap mass spectrometer. In a series of reference measurements, using bulk sampling and electrospray ionization mass spectrometry, various low-molecular-weight metabolites are detected in the micropatches exposed to skin. The sampling time is as short as 10 min, while the desorption time is 2 min. Technical precision of micropatch analysis varies within the range of 3-42%, depending on the sample and the method of data treatment; the best technical precision (≤10%) has been achieved while using an isotopically labeled internal standard. The limits of detection range from 7 to 278 pmol. Differences in the quantities of extracted metabolites are observed for the samples obtained from healthy individuals (intersubject variabilities: 30-89%; n = 9), which suggests that this method may have the potential to become a semiquantitative assay in clinical analysis and forensics.
Diamond nanoparticles (DNPs) were incorporated into matrix-assisted laser desorption/ionization (MALDI) samples to enhance the sensitivity of the mass spectrometer to carbohydrates. The DNPs optimize the MALDI sample morphology and thermalize the samples for thermally labile compounds because they have a high thermal conductivity, a low extinction coefficient in UV-vis spectral range, and stable chemical properties. The best enhancement effect was achieved when matrix, DNP, and carbohydrate solutions were deposited and vacuum-dried consecutively to form a trilayer sample morphology. It allows the direct identification of underivatized carbohydrates mixed with equal amount of proteins because no increase in the ion abundance of proteins was achieved. For dextran with an average molecular weight of 1500, the trilayer method typically improves the sensitivity by 79- and 7-fold in comparison to the conventional dried-droplet and thin-layer methods, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.