The uncertainty relation is a fundamental limit in quantum mechanics and is of great importance to quantum information processing as it relates to quantum precision measurement. Due to interactions with the surrounding environment, a quantum system will unavoidably suffer from decoherence. Here, we investigate the dynamic behaviors of the entropic uncertainty relation of an atom-cavity interacting system under a bosonic reservoir during the crossover between Markovian and non-Markovian regimes. Specifically, we explore the dynamic behavior of the entropic uncertainty relation for a pair of incompatible observables under the reservoir-induced atomic decay effect both with and without quantum memory. We find that the uncertainty dramatically depends on both the atom-cavity and the cavity-reservoir interactions, as well as the correlation time, τ, of the structured reservoir. Furthermore, we verify that the uncertainty is anti-correlated with the purity of the state of the observed qubit-system. We also propose a remarkably simple and efficient way to reduce the uncertainty by utilizing quantum weak measurement reversal. Therefore our work offers a new insight into the uncertainty dynamics for multi-component measurements within an open system, and is thus important for quantum precision measurements.
The uncertainty principle limits the ability to simultaneously predict measurement outcomes for two non‐commuting observables of a quantum particle. However, the uncertainty can be violated by considering a particle as a quantum memory correlated with the primary particle. By modeling an Unruh–Dewitt detector coupled to a massless scalar field, it is explored how the Unruh effect affects the entropic uncertainty and the tighter lower bound for a pair of entangled detectors is probed when one of them is accelerated. It is found that Unruh thermal noise really gives rise to an increase of entropic uncertainty for the given conditions since the correlation between quantum memory and the measured system is decreased. It is shown that the bound of the entropic uncertainty relations, in the presence of memory, can be formulated by introducing the Holevo quantity and mutual information. It is also noticed that Adabi's lower bound is tighter than that of Berta, and just the optimal bound under the Unruh effect. Moreover, it is shown that Berta's lower bound is unrelated to the choice of complementary observables, while the optimal Adabi's lower bound is dependent on the measurement choice. It is worth mentioning that the investigations may offer a better understanding of the entropic uncertainty in a relativistic motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.