Nasopharyngeal carcinoma (NPC) has a particularly high prevalence in southern China, southeastern Asia and northern Africa. Radiation resistance remains a serious obstacle to successful treatment in NPC. This study aimed to explore the metabolic feature of radiation-resistant NPC cells and identify new molecular-targeted agents to improve the therapeutic effects of radiotherapy in NPC. Methods: Radiation-responsive and radiation-resistant NPC cells were used as the model system in vitro and in vivo. Metabolomics approach was used to illustrate the global metabolic changes. 13C isotopomer tracing experiment and Seahorse XF analysis were undertaken to determine the activity of fatty acid oxidation (FAO). qRT-PCR was performed to evaluate the expression of essential FAO genes including CPT1A. NPC tumor tissue microarray was used to investigate the prognostic role of CPT1A. Either RNA interference or pharmacological blockade by Etomoxir were used to inhibit CPT1A. Radiation resistance was evaluated by colony formation assay. Mitochondrial membrane potential, apoptosis and neutral lipid content were measured by flow cytometry analysis using JC-1, Annexin V and LipidTOX Red probe respectively. Molecular markers of mitochondrial apoptosis were detected by western blot. Xenografts were treated with Etomoxir, radiation, or a combination of Etomoxir and radiation. Mitochondrial apoptosis and lipid droplets content of tumor tissues were detected by cleaved caspase 9 and Oil Red O staining respectively. Liquid chromatography coupled with tandem mass spectrometry approach was used to identify CPT1A-binding proteins. The interaction of CPT1A and Rab14 were detected by immunoprecipitation, immunofluorescence and in situ proximity ligation analysis. Fragment docking and direct coupling combined computational protein-protein interaction prediction method were used to predict the binding interface. Fatty acid trafficking was measured by pulse-chase assay using BODIPY C16 and MitoTracker Red probe. Results: FAO was active in radiation-resistant NPC cells, and the rate-limiting enzyme of FAO, carnitine palmitoyl transferase 1 A (CPT1A), was consistently up-regulated in these cells. The protein level of CPT1A was significantly associated with poor overall survival of NPC patients following radiotherapy. Inhibition of CPT1A re-sensitized NPC cells to radiation therapy by activating mitochondrial apoptosis both in vitro and in vivo. In addition, we identified Rab14 as a novel CPT1A binding protein. The CPT1A-Rab14 interaction facilitated fatty acid trafficking from lipid droplets to mitochondria, which decreased radiation-induced lipid accumulation and maximized ATP production. Knockdown of Rab14 attenuated CPT1A-mediated fatty acid trafficking and radiation resistance. Conclusion: An active FAO is a vital signature of NPC radiation resistance. Targeting CPT1A could be a beneficial regimen to improve the therapeutic effects of radiotherapy in NPC patients. Importantly, the CPT1A-Rab14 interaction plays roles in CPT1A-mediated radiation...
Mesenchymal stem cells (MSCs) represent one of the most promising stem cells for a number of degenerative conditions due to their multipotency, immunoprivileged properties, and easy expansion in vitro. However, the limited life span of primary MSCs during in vitro expansion greatly hampers their use in clinical applications and basic research. Immortalization of MSCs will overcome this problem and may provide a very useful tool with which to study MSC biology. Here we showed that silencing p53 expression with lentivirus-mediated small interfering RNA delayed the senescence by extended passage number, but was not sufficient to immortalize primary MSCs. However, combination of p53 knockdown and human telomerase reverse transcriptase (hTERT) overexpression was sufficient to immortalize MSCs. The effects of p53 knockdown and hTERT overexpression on MSCs, including proliferation, colony formation, and differentiation, were determined. The resultant immortal MSCs displayed similar surface antigen profile to primary MSCs and retained MSC differentiation potential. Gene expression profile showed high similarity between immortalized MSCs and primary MSCs. In addition, immortalization-associated genes were also identified. Our data suggested immortalization of MSCs related to upregulation of cell cycle regulator and DNA repair genes enabling them to bypass cell crisis and complete mitosis. This study provides a new cellular model for basic studies of MSCs and understanding of the molecular basis of MSC immortalization.
dVariable-number tandem-repeat (VNTR) polymorphisms are ubiquitous in bacteria. However, only a small fraction of them has been functionally studied. Here, we report an intergenic VNTR polymorphism that confers an altered level of toxin production and increased virulence in Streptococcus pyogenes. The nature of the polymorphism is a one-unit deletion in a three-tandemrepeat locus upstream of the rocA gene encoding a sensor kinase. S. pyogenes strains with this type of polymorphism cause human infection and produce significantly larger amounts of the secreted cytotoxins S. pyogenes NADase (SPN) and streptolysin O (SLO). Using isogenic mutant strains, we demonstrate that deleting one or more units of the tandem repeats abolished RocA production, reduced CovR phosphorylation, derepressed multiple CovR-regulated virulence factors (such as SPN and SLO), and increased virulence in a mouse model of necrotizing fasciitis. The phenotypic effect of the VNTR polymorphism was nearly the same as that of inactivating the rocA gene. In summary, we identified and characterized an intergenic VNTR polymorphism in S. pyogenes that affects toxin production and virulence. These new findings enhance understanding of rocA biology and the function of VNTR polymorphisms in S. pyogenes. Streptococcus pyogenes (group A streptococcus, or GAS) is a human-specific bacterial pathogen causing ϳ10,000 invasive and 10 million noninvasive infections in the United States annually. Enhanced understanding of the molecular pathogenesis of S. pyogenes is necessary to develop novel therapeutic strategies. S. pyogenes expresses a large arsenal of virulence factors (1, 2), many of which are well studied. These include antiphagocytic hyaluronic acid capsule (3), the cytotoxins S. pyogenes NADase (SPN) and streptolysin O (SLO) (4, 5), and a potent extracellular cysteine protease, SpeB (6, 7). These virulence factors are regulated by the CovR/CovS two-component regulatory system (8-10). Polymorphisms in covR or covS have been reported to change the level of production of these virulence factors and thereby alter S. pyogenes virulence (11, 12).We recently sequenced 1,125 emm89 genomes (13, 14) and measured the levels of SPN and SLO production in some of these sequenced strains. Unexpectedly, two strains (MGAS28980 and MGAS27457) with functionally wild-type covR and covS genes produced increased amounts of SPN and SLO. We previously showed that polymorphisms in the nga upstream regulatory region can affect nga-slo transcription and production of SPN and SLO (13,14). However, all strains that we assayed for SPN and SLO production had the same variant-3 nga promoter (13). This suggests that other factors are contributing to overproduction of SPN and SLO in strains MGAS28980 and MGAS27457. Genetic interrogation revealed that both of these strains have a variablenumber tandem-repeat (VNTR) polymorphism upstream of rocA. The nature of the polymorphism is a single GAAGGA deletion in the GAACGA-GAAGGA-GAAGGA repeat locus three nucleotides upstream of the rocA trans...
Nanoparticles have become a powerful tool for cell imaging, biomolecule and cell and protein interaction studies, but are difficult to rapidly and accurately measure in most assays. Dark-field microscope (DFM) image analysis approaches used to quantify nanoparticles require high-magnification near-field (HN) images that are labor intensive due to a requirement for manual image selection and focal adjustments needed when identifying and capturing new regions of interest. Low-magnification far-field (LF) DFM imagery is technically simpler to perform but cannot be used as an alternate to HN-DFM quantification, since it is highly sensitive to surface artifacts and debris that can easily mask nanoparticle signal. We now describe a new noise reduction approach that markedly reduces LF-DFM image artifacts to allow sensitive and accurate nanoparticle signal quantification from LF-DFM images. We have used this approach to develop a “Dark Scatter Master” (DSM) algorithm for the popular NIH image analysis program ImageJ, which can be readily adapted for use with automated high-throughput assay analyses. This method demonstrated robust performance quantifying nanoparticles in different assay formats, including a novel method that quantified extracellular vesicles in patient blood sample to detect pancreatic cancer cases. Based on these results, we believe our LF-DFM quantification method can markedly decrease the analysis time of most nanoparticle-based assays to impact both basic research and clinical analyses.
alpha1,6-Fucose residues within the N-glycan core structures were commonly observed in many glycoproteins. Our previous studies showed that aberrantly alpha1,6-fucosylated glycoproteins might be associated with metastasis of hepatocellular carcinoma (HCC). Little is known about human normal liver tissues (HNLTs) in the literatures. In this study, a target glycoproteomic approach which consists of lectin-affinity chromatography, 2-DE, protein immunoprecipitation and lectin blot, and MALDI-MS/MS, was utilized to screen physiologically alpha1,6-fucosylated glycoproteins. Lens culinaris agglutinin (LCA)-affinity glycoprotein profiles of HNLT were established and analyzed, which allowed identification of 53 proteins by MS analysis, including haptoglobin precursor, alpha-enolase, etc. Gene ontology (GO) annotation proved that these proteins distribute predominately in organelle and play crucial roles in binding and catalytic reactions. The present methodology enabled the identification of all the specific subsets of glycoprotein, and the corresponding data could contribute to the finding of more aberrantly alpha1,6-fucosylated glycoproteins related to liver diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.