As lithium-ion batteries (LIBs) are undergoing unprecedented development in electric vehicles (EVs) and renewable grids, recycling spent battery disposal is becoming the dominating issue considering the urgent demand for sustainable resources and eco-friendly development. However, existing recovery methods for spent LIBs still suffer from complex processes and low processing efficiency. Herein, an effective pyroprocessing-based strategy was proposed to recycle spent lithium iron phosphate (LFP) materials, featuring full element regeneration and conversion of high-value products. Specifically, over 99% Li was extracted and converted into high purity lithium carbonate (>99%), while Fe and P were further converted into value-added Fe2P2O7 and Na4P2O7, respectively. Due to the benefits of high efficiency of metal extraction and the reuse of all valuable elements, the pyroprocessing-based strategy potentially generates the profit of 1.44 $ kg–1 of LFP batteries, over three times more than that of the conventional hydrometallurgical process, while the discharges of wastewater and residue are reduced by 66.3 and 93.9%, respectively. This study provides a new pyroprocessing-based approach to the green recovery of all elements of LFP materials in spent LFP batteries.
Sandwiching polymer interlayers between the electrode and solid electrolyte is considered promising in solving the interfacial issues arising from solid–solid contact in garnet-based solid-state batteries, but drawbacks including low ionic conductivity, inferior Li+ transference number, and unsatisfying mechanical property of the polymer hindered the practical application of such strategy. To solve the mentioned shortcomings of the polymer interlayer simultaneously, we introduce the ferroelectric material, BaTi2O5 (BT) nanorods, into the polymer matrix in this work. By taking full advantage of the plasticization effect and intrinsic spontaneous polarization of the introduced ferroelectric, the polymer’s ionic conductivity and Li+ transference number have been significantly enhanced. The built-in electric field BT introduced also benefits the modulation of CEI components formed on the cathode particles, further enhancing the battery performance by decreasing cathode degradation. Besides, the BT nanorods’ particular high aspect ratio also helps increase the mechanical property of the obtained polymer film, making it more resistant to lithium dendrite growth across the interface. Benefitting from the merits mentioned above, the assembled lithium symmetric cells using garnet SE with the BT-modified polymer interlayer exhibit stable cycling performance (no short circuit after 1000 h under RT) with low polarization voltage. The full battery employing LiFePO4 as a cathode also presents superior capacity retentions (94.6% after 200 cycles at 0.1 C and 93.4% after 400 cycles at 0.2 C). This work highlights the importance of ferroelectric materials with specific morphology in enhancing the electrochemical performance of polymer-based electrolytes, promoting the practical application of solid-state batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.