Harmful algal blooms (HABs) caused by cyanobacteria in freshwater environments produce toxins (e.g., microcystin) that are harmful to human and animal health. HAB frequency and intensity are increasing with greater nutrient runoff and a warming climate. Lake spray aerosol (LSA) released from freshwater lakes has been identified on lakeshores and after transport inland, including from lakes with HABs, but little is known about the potential for HAB toxins to be incorporated into LSA. In this study, freshwater samples were collected from two lakes in Michigan: Mona Lake during a severe HAB with microcystin concentrations (>200 μg/L) well above the Environmental Protection Agency (EPA) recommended “do not drink” level (1.6 μg/L) and Muskegon Lake without a HAB (<1 μg/L microcystin). Microcystin toxins were identified in freshwater, as well as aerosol particles generated in the laboratory from Mona Lake water by liquid chromatography–tandem mass spectrometry (LC–MS/MS) at atmospheric concentrations up to 50 ± 20 ng/m3. Enrichment of hydrophobic microcystin congeners (e.g., microcystin-LR) was observed in aerosol particles relative to bulk freshwater, while enrichment of hydrophilic microcystin (e.g., microcystin-RR) was lower. As HABs increase in a warming climate, understanding and quantifying the emissions of toxins into the atmosphere is crucial for evaluating the health consequences of HABs.
Determining the physicochemical properties of ingested nanoparticles within the gastrointestinal tract (GIT) is critical for evaluating the impact of environmental exposure and potential for nanoparticle drug delivery. However, it is challenging to predict nanoparticle physicochemical properties at the point of intestinal absorption due to the changing chemical environments within the GIT. Herein, a dynamic nanoparticle digestion simulator (NDS) was constructed to examine nanoparticle evolution due to changing pH and salt concentrations in the stomach and upper intestine. This multicompartment, flow-through system simulates digestion by transferring gastrointestinal fluids and digestive secretions at physiologically relevant time scales and flow rates. Pronounced differences in aggregation and aggregate stability were observed with silver nanoparticles (citrate-coated) with an initial hydrodynamic diameter (Dh) of 24.6 ± 0.4 nm examined under fasted (pH 2) and fed (pH 5) gastric conditions using nanoparticle tracking analysis (NTA) for size distributions and transmission electron microscopy with energy dispersive X-ray spectroscopy (TEM–EDX) for morphology and elemental composition. Under fasted stomach conditions, particles aggregated to Dh = 130 ± 10 nm and remained as large aggregates in the upper intestinal compartments (duodenum and jejunum) ending with Dh = 110 ± 20 nm and a smaller mode at 59 ± 8 nm. In contrast, under fed conditions, nanoparticles aggregated to 60 ± 10 nm in the stomach, then disaggregated to individual nanoparticles (26 ± 2 nm) in the intestinal compartments. The NDS provides an analytical approach for studying nanoparticle physicochemical modifications within the GIT and the impacts of intentionally and unintentionally ingested nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.