For the analysis of competing risks data, three different types of hazard functions have been considered in the literature, namely the cause-specific hazard, the sub-distribution hazard, and the marginal hazard function. Accordingly, medical researchers can fit three different types of the Cox model to estimate the effect of covariates on each of the hazard function. While the relationship between the cause-specific hazard and the sub-distribution hazard has been extensively studied, the relationship to the marginal hazard function has not yet been analyzed due to the difficulties related to non-identifiability. In this paper, we adopt an assumed copula model to deal with the model identifiability issue, making it possible to establish a relationship between the sub-distribution hazard and the marginal hazard function. We then compare the two methods of fitting the Cox model to competing risks data. We also extend our comparative analysis to clustered competing risks data that are frequently used in medical studies. To facilitate the numerical comparison, we implement the computing algorithm for marginal Cox regression with clustered competing risks data in the R joint.Cox package and check its performance via simulations. For illustration, we analyze two survival datasets from lung cancer and bladder cancer patients.
Traditional bivariate meta-analyses adopt the bivariate normal model. As the bivariate normal distribution produces symmetric dependence, it is not flexible enough to describe the true dependence structure of real meta-analyses. As an alternative to the bivariate normal model, recent papers have adopted “copula” models for bivariate meta-analyses. Copulas consist of both symmetric copulas (e.g., the normal copula) and asymmetric copulas (e.g., the Clayton copula). While copula models are promising, there are only a few studies on copula-based bivariate meta-analysis. Therefore, the goal of this article is to fully develop the methodologies and theories of the copula-based bivariate meta-analysis, specifically for estimating the common mean vector. This work is regarded as a generalization of our previous methodological/theoretical studies under the FGM copula to a broad class of copulas. In addition, we develop a new R package, “CommonMean.Copula”, to implement the proposed methods. Simulations are performed to check the proposed methods. Two real dataset are analyzed for illustration, demonstrating the insufficiency of the bivariate normal model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.