As one of the simplest methods to construct snapshot spectral imagers, multispectral filter array (MSFA) has been applied to commercial miniatured spectral imagers. While most of them have fixed configurations of spectral channels, lacking flexibility and replaceability. Moreover, conventional MSFA only comprises filtering channels but lacks the panchromatic channel which is essential in detecting dim and indistinct objects. Here, we propose a modular assembly method for snapshot imager which can simultaneously acquire the object’s multispectral and panchromatic information based on a customized filter array. The multispectral-panchromatic filter array is batch fabricated and integrated with the imaging senor through a modular mode. Five-band spectral images and a broadband intensity image can be efficiently acquired in a single snapshot photographing. The efficacy and accuracy of the imager are experimentally verified in imaging and spectral measurements. Owing to the modular architecture, our proposed assembly method owns the advantages of compactness, simple assembling, rapid replacement, and customized designing, which overcomes the expensiveness and complexity of scientific-level snapshot spectral imaging systems.
Longwave infrared spectral imaging (LWIR-SI) has potential in many important civilian and military fields. However, conventional LWIR-SI systems based on traditional dispersion elements always suffer the problems of high cost, large volume and complicated system structure. Micro-electro-mechanical systems Fabry-Perot filtering chips (MEMS-FPFC) give a feasible way for realizing miniaturized, low cost and customizable LWIR-SI systems. The LWIR MEMS-FPFC ever reported can’t meet the demands of the next-generation LWIR-SI systems, due to the limitation of small aperture size and nonlinear actuation. In this work, we propose a large-aperture, widely and linearly tunable electromagnetically actuated MEMS-FPFC for LWIR-SI. A multi-field coupling simulation model is built and the wafer-scale bulk-micromachining process is applied to realize the design and fabrication of the proposed MEMS-FPFC. Finally, with the rational structural design and fabrication process, the filtering chip after packaging has an aperture size of 10 mm, which is the largest aperture size of LWIR MEMS-FPFC ever reported. The fabricated electromagnetically actuated MEMS-FPFC can be tuned continuously across the entire LWIR range of 8.39-12.95 µm under ±100 mA driving current with a pretty good linear response of better than 98%. The developed electromagnetically actuated MEMS-FPFC can be directly used for constructing miniaturized LWIR-SI systems, aiming for such applications as military surveillance, gas sensing, and industry monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.