Synthetic gauge fields in synthetic dimensions are now of great interest. This concept provides a convenient manner for exploring topological phases of matter. Here, we report on the first experimental realization of an atom-optically synthetic gauge field based on the synthetic momentum-state lattice of a Bose gas of 133Cs atoms, where magnetically controlled Feshbach resonance is used to tune the interacting lattice into noninteracting regime. Specifically, we engineer a noninteracting one-dimensional lattice into a two-leg ladder with tunable synthetic gauge fields. We observe the flux-dependent populations of atoms and measure the gauge field-induced chiral currents in the two legs. We also show that an inhomogeneous gauge field could control the atomic transport in the ladder. Our results lay the groundwork for using a clean noninteracting synthetic momentum-state lattice to study the gauge field-induced topological physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.