Network motifs are subnetworks that appear in the network far more frequently than in randomized networks. They have gathered much attention for uncovering structural design principles of complex networks. One of the previous approaches for motif detection is sampling method, in- troduced to perform the computational challenging task. However, it suffers from sampling bias and probability assignment. In addition, subgraph search, being very time-consuming, is a critical process in motif detection as we need to enumerate subgraphs of given sizes in the original input graph and an ensemble of random generated graphs. Therefore, we present a Degree-based Sampling Method with Partition-based Subgraph Finder for larger motif detection. Inspired by the intrinsic feature of real biological networks, Degree-based Sampling is a new solution for probability assignment based on degree. And, Partition-based Subgraph Finder takes its inspiration from the idea of partition, which improves computational efficiency and lowers space consumption. Experimental study on UETZ and E.COLI data set shows that the proposed method achieves more accuracy and efficiency than previous methods and scales better with increasing subgraph size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.