β-Catenin has been implicated in major depressive disorder (MDD), which is associated with synaptic plasticity and dendritic arborization. MicroRNAs (miRNA) are small noncoding RNAs containing about 22 nucleotides and involved in a variety of physiological and pathophysiological process, but their roles in MDD remain largely unknown. Here, we investigated the expression and function of miRNAs in the mouse model of chronic social defeat stress (CSDS). The regulation of β-catenin by selected miRNA was validated by silico prediction, target gene luciferase reporter assay, and transfection experiment in neurons. We demonstrated that the levels of miR-214-3p, which targets β-catenin transcripts were significantly increased in the medial prefrontal cortex (mPFC) of CSDS mice. Antagomir-214-3p, a neutralizing inhibitor of miR-214-3p, increased the levels of β-catenin and reversed the depressive-like behavior in CSDS mice. Meanwhile, antagomir-214-3p increased the amplitude of miniature excitatory postsynaptic current (mEPSC) and the number of dendritic spines in mPFC of CSDS mice, which may be related to the elevated expression of cldn1. Furthermore, intranasal administered antagomir-214-3p also significantly increased the level of β-catenin and reversed the depressive-like behaviors in CSDS mice. These results may represent a new therapeutic target for MDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.