The natural planar and rigid structures of most of the hydrophobic photosensitizers (PSs) [such as tetraphenyl porphyrin (TPP)] significantly reduce their loading efficiencies in polymeric nanoparticles (NPs) because of the strong π−π interaction-induced aggregation. This aggregation-caused quenching will further reduce the quantum yield of singlet oxygen ( 1 O 2 ) generation and weaken the efficiency of photodynamic therapy (PDT). In addition, the small molecular PSs exhibit short tumor retention time and tend to be easily cleared once released. Herein, poly(TPP) NPs, prepared by cross-linking of reactive oxygen species degradable, thioketal linkers and TPP derivatives, followed by coprecipitation, were first developed with quantitative loading efficiency (>99%), uniform NP sizes (without aggregation), increased singlet oxygen quantum yield (Φ Δ = 0.79 in dimethyl sulfoxide compared with 0.52 for original TPP), increased in vitro phototoxicity, extended tumor retention time, light-triggered on-demand release, and enhanced in vivo antitumor efficacy, which comprehensively address the multiple issues for most of the PSs in the PDT area.
Background: Long non-coding RNA (lncRNA) as a widespread and pivotal epigenetic molecule participates in the occurrence and progression of malignant tumors. DRAIC, a kind of lncRNA whose coding gene location is on 15q23 chromatin, has been found to be weakly expressed in a variety of malignant tumors and acts as a suppressor, but its characteristics and role in gastric cancer (GC) remain to be elucidated. Methods: Sixty-seven primary GC tissues and paired paracancerous normal tissues were collected. Bioinformatics is used to predict the interaction molecules of DRAIC. DRAIC and NFRKB were overexpressed or interfered exogenously in GC cells by lentivirus or transient transfection. Quantitative real-time PCR (qPCR) and western blotting were used to evaluate the expression of DRAIC, UCHL5 and NFRKB. The combinations of DRAIC and NFRKB or UCHL5 and NFRKB were verified by RNA-IP and Co-IP assays. Ubiquitination-IP and the treatment of MG132 and CHX were used to detect the ubiquitylation level of NFRKB. The CCK-8 and transwell invasion and migration assays measured the proliferation, migration and invasion of GC cells. Results: DRAIC is down-regulated in GC tissues and cell lines while its potential interacting molecules UCHL5 and NFRKB are up-regulated, and DRAIC is positively correlated with NFRKB protein instead of mRNA. Lower DRAIC and higher UCHL5 and NFRKB indicated advanced progression of GC patients. DRAIC could increase NFRKB protein significantly instead of NFRKB mRNA and UCHL5, and bind to UCHL5. DRAIC combined with UCHL5 and attenuated binding of UCHL5 and NFRKB, meanwhile promoting the degradation of NFRKB via ubiquitination, and then inhibited the proliferation and metastasis of GC cells, which can be rescued by oeNFRKB. Conclusion: DRAIC suppresses GC proliferation and metastasis via interfering with the combination of UCHL5 and NFRKB and mediating ubiquitination degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.