A special Lie symmetry and Hojman conserved quantity of the Appell equations for a Chetaev nonholonomic system are studied. The differential equations of motion and Appell equations of the Chetaev nonholonomic system are established. Under the special Lie symmetry group transformations in which the time is invariable, the determining equation of the special Lie symmetry of the Appell equations for a Chetaev nonholonomic system is given, and the expression of the Hojman conserved quantity is deduced directly from the Lie symmetry. Finally, an example is given to illustrate the application of the results.
Special Lie-Mei symmetry and conserved quantities for Appell equations expressed by Appell functions in a holonomic mechanical system are investigated. On the basis of the Appell equation in a holonomic system, the definition and the criterion of special Lie-Mei symmetry of Appell equations expressed by Appell functions are given. The expressions of the determining equation of special Lie-Mei symmetry of Appell equations expressed by Appell functions, Hojman conserved quantity and Mei conserved quantity deduced from special Lie-Mei symmetry in a holonomic mechanical system are gained. An example is given to illustrate the application of the results.
For a weakly nonholonomic system, the Lie symmetry and approximate Hojman conserved quantity of Appell equations are studied. Based on the Appell equations for a weakly nonholonomic system under special infinitesimal transformations of a group in which the time is invariable, the definition of the Lie symmetry of the weakly nonholonomic system and its first-degree approximate holonomic system are given. With the aid of the structure equation that the gauge function satisfies, the exact and approximate Hojman conserved quantities deduced directly from the Lie symmetry are derived. Finally, an example is given to study the exact and approximate Hojman conserved quantity of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.