A novel method is proposed to modify montmorillonite with coupling agents and Hexadecyl triphenyl phosphonium bromide surfactants made by our group (named P-surfactant in the following). The structure of organophilic montmorillonite (OMMT) was investigated by FT-IR, XRD and TG. The FT-IR shows the coupling agents were inserted between the layers of MMT and reacted with –OH of MMT. The results of X-ray diffraction shows that the coupling agents were all intercalated into the layers of MMT. The interlayer spacing of montmorillonite increases to 4.00 nm, the effect of modification is well. The results of TG showed the thermal stability was better.
This paper details the preparation of one kind of PEG/MMT solid-solid phase change materials. With polyethylene glycol (PEG) as the phase change materials, montmorillonite (MMT) as skeletons, through the graft copolymerization method, prepare PEG/MMT solid-solid phase change energy storage materials. The structure, the phase transition behavior and thermal stability of PEG/MMT phase change materials were analyzed and studied by infrared spectroscopy (FTIR), thermogravimetry (TG) and differential scanning calorimetry (DSC), and studied the influence of different molecular weight PEG on the capability and structure of the material, polymer phase change energy storage behavior and crystallization behavior. Finally, The PEG/MMT solid-solid phase change material could improve enthalpy value and thermal stability.
In this paper, crystallization kinetics behavior of a high heat-absorbing PET / TiN nanocomposite ,the effect of the crystallization behavior of adding nanoendothermic agent,and their crystallization rate and crystallization were studied by differential scanning calorimeter (DSC) ,researching the effect of crystallization behavior of PET with modified TiN and using Avrami equation to study non-isothermal crystallization kinetics. The results show that the kinetic rate constant Zc increasing with the increase of cooling rate, the crystallization half time t1 / 2 subsequently reduced, the crystal growth become fast; TiN is a good nucleating agent in PET, improve PET’s crystallization rate, adding TiN reduce the crystallization activation energy. This has important significance to guide nanocomposite processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.