Magnetic domain motion has been widely studied in the fields of spintronics, nanowires, and thin films. However, there is a lack of such studies on industrial steels, especially for domain motion under the action of varying stress. Understanding domain motion under stress is helpful for the improvement of evaluation accuracy and the establishment of theoretical models of passive, nondestructive testing technology. This paper presents the influence of varying tensile stresses on the magnetic domain motion of silicon steel sheets. Magnetic domain rotation and domain wall displacement were characterized using magnetic domain images, and their motion mechanisms under elastic and plastic stresses are presented. The results show that the domain rotation under stress involves reversible and irreversible changes. The effect of material rearrangement on domain rotation and domain wall displacement after plastic deformation is discussed. Based on the motion mechanism, a threshold stress value (TSV) required for the complete disappearance of the supplementary domains in the elastic range is proposed, enabling the classification of the elastic stress ranges in which the reversible and irreversible domain rotations occur. In addition, the effect of microstructure on TSV is also discussed, and the results show that the regions far away from the grain boundary need larger stresses to complete an irreversible domain rotation. Additionally, the domain width and orientation also affect the TSV. These findings regarding the domain motion mechanism and TSV can help to explain the sequence of domain rotation under stress and modify the stress assessment under dynamic loads in electromagnetic nondestructive evaluation, especially in the magnetic memory method.
Deep insights into microstructures and domain wall behaviors in the evaluation of different material statuses under elastic and plastic stress ranges have essential implications for magnetic sensing and nondestructive testing and evaluation (NDT&E). This paper investigates the repeatability and stability of residual magnetic field (RMF) signals using a magneto-optical Kerr effect microscope for the stress characterization of silicon steel sheets beyond their elastic limit. Real-time domain motion is used for RMF characterization, while both the repeatability under plastic ranges after the cyclic stress rounds and stability during relaxation time are studied in detail. The distinction between elastic and plastic materials is discussed in terms of their spatio-temporal properties for further residual stress measurement since both ranges are mixed. During the relaxation time, the RMF of the plastic material shows a two-stage change with apparent recovery, which is contrasted with the one-stage change in the elastic material. Results show that the grain boundary affects the temporal recovery of the RMF. These findings concerning the spatio-temporal properties of different RMFs in plastic and elastic materials can be applied to the design and development of magnetic NDT&E for (residual) stress measurement and material status estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.