Summary Colorectal cancer primarily metastasizes to the liver and kills over 600,000 people annually. By functionally screening 661 miRNAs in parallel during liver colonization, we have identified miR-551a and miR-483 as robust endogenous suppressors of liver colonization and metastasis. These miRNAs convergently target creatine kinase, brain-type (CKB), which phosphorylates the metabolite creatine, to generate phosphocreatine. CKB is released into the extracellular space by metastatic cells encountering hepatic hypoxia and catalyzes production of extracellular phosphocreatine, which is imported through the SLC6A8 transporter and used to generate ATP—fueling metastatic survival. Combinatorial therapeutic viral delivery of miR-551a and miR-483-5p through single-dose adeno-associated viral (AAV) delivery significantly suppressed colon cancer metastatic colonization, as did CKB inhibition with a small-molecule inhibitor. Importantly, human liver metastases express higher CKB and SLC6A8 levels and reduced miR-551a/miR-483 levels relative to primary tumors. We identify the extracellular space as an important compartment for malignant energetic catalysis and therapeutic targeting.
The consensus molecular subtype (CMS) classification of colorectal cancer is based on bulk transcriptomics. The underlying epithelial cell diversity remains unclear. We analyzed 373,058 single-cell transcriptomes from 63 patients, focusing on 49,155 epithelial cells. We identified a pervasive genetic and transcriptomic dichotomy of malignant cells, based on distinct gene expression, DNA copy number and gene regulatory network. We recapitulated these subtypes in bulk transcriptomes from 3,614 patients. The two intrinsic subtypes, iCMS2 and iCMS3, refine CMS. iCMS3 comprises microsatellite unstable (MSI-H) cancers and one-third of microsatellite-stable (MSS) tumors. iCMS3 MSS cancers are transcriptomically more similar to MSI-H cancers than to other MSS cancers. CMS4 cancers had either iCMS2 or iCMS3 epithelium; the latter had the worst prognosis. We defined the intrinsic epithelial axis of colorectal cancer and propose a refined ‘IMF’ classification with five subtypes, combining intrinsic epithelial subtype (I), microsatellite instability status (M) and fibrosis (F).
Overexpression of phosphatase of regenerating liver (PRL)-3 is associated with the progression of diverse human cancers. We show that the overexpression of PRL-3 protein is not directly associated with its transcript levels, indicating the existence of an underlying posttranscriptional regulation. The 5' untranslanted region (UTR) of PRL-3 mRNA possesses triple GCCCAG motifs capable of suppressing mRNA translation through interaction with PolyC-RNA-binding protein 1 (PCBP1), which retards PRL-3 mRNA transcript incorporation into polyribosomes. Overexpression of PCBP1 inhibits PRL-3 expression and inactivates AKT, whereas knockdown of PCBP1 causes upregulation of PRL-3 protein levels, activation of AKT, and promotion of tumorigenesis. An inverse correlation between protein levels of PRL-3 and PCBP1 in human primary cancers supports the clinical relevance.
The human genome contains more than 200,000 gene isoforms. However, different isoforms can be highly similar, and with an average length of 1.5kb remain difficult to study with short read sequencing. To systematically evaluate the ability to study the transcriptome at a resolution of individual isoforms we profiled 5 human cell lines with short read cDNA sequencing and Nanopore long read direct RNA, amplification-free direct cDNA, PCR-cDNA sequencing. The long read protocols showed a high level of consistency, with amplification-free RNA and cDNA sequencing being most similar. While short and long reads generated comparable gene expression estimates, they differed substantially for individual isoforms. We find that increased read length improves read-to-transcript assignment, identifies interactions between alternative promoters and splicing, enables the discovery of novel transcripts from repetitive regions, facilitates the quantification of full-length fusion isoforms and enables the simultaneous profiling of m6A RNA modifications when RNA is sequenced directly. Our study demonstrates the advantage of long read RNA sequencing and provides a comprehensive resource that will enable the development and benchmarking of computational methods for profiling complex transcriptional events at isoform-level resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.