Alzheimer's disease (AD) is a chronic neurodegenerative, and abnormal aggregation of the neurotoxic β amyloid (Aβ) peptide is an early event in AD. The present study aimed to determine the correlation between the nicotinic acetylcholine receptor α7 subunit (α7 nAChR) and Aβ in the brains of patients with AD, and to investigate whether the increased expression levels of the α7 nAChR could alter the neurotoxicity of Aβ. The expression levels of α7 nAChR and Aβ in the brains of patients with AD and healthy brains were analyzed using immunofluorescence. Moreover, SH-SY5Y cells were used to stably overexpress or silence α7 nAChR expression levels, prior to the treatment with or without 1 µmol/l Aβ 1-42 oligomer (AβO). The mRNA and protein expression levels of α7 nAChR, synaptophysin (SYP), postsynaptic density of 95 kDa (PSD-95) and synaptosomal-associated protein of 25 kDa (SNAP-25) were subsequently analyzed using reverse transcription-quantitative PCR and western blotting. In addition, the concentration of acetylcholine (ACh) and the activity of acetylcholinesterase (AChE) were analyzed using spectrophotometry, while the cell apoptotic rate was determined using flow cytometry. The expression of Aβ in the brains of patients with AD was found to be significantly increased, whereas the expression of α7 nAChR was significantly decreased compared with the healthy control group. In vitro , the expression levels of α7 nAChR were significantly increased or decreased following the overexpression or silencing of the gene, respectively. Consistent with these observations, the mRNA and protein expression levels of SYP, PSD-95 and SNAP-25 were also significantly increased following the overexpression of α7 nAChR and decreased following the genetic silencing of the receptor. In untransfected or negative control cells, the expression levels of these factors and the apoptotic rate were significantly reduced following the exposure to AβO, which was found to be attenuated by α7 nAChR overexpression, but potentiated by α7 nAChR RNA silencing. However, no significant differences were observed in either the ACh concentration or AChE activity following transfection. Collectively, these findings suggested that α7 nAChR may protect the brains of patients with AD against Aβ, as α7 nAChR overexpression increased the expression levels of SYP, SNAP-25 and PSD-95, and attenuated the inhibitory effect of Aβ on the expression of these synaptic proteins and cell apoptosis. Overall, this indicated that α7 nAChR may serve an important neuroprotective role in AD.
The present aim was to characterize the influence of the α7 nicotinic acetylcholine receptor (nAChR) on BACE, the enzyme that cleaves the amyloid precursor protein (APP) at the β-site, as well as on the oxidative stress induced by amyloid-β peptide (Aβ). To this end, human neuroblastoma SH-SY5Y cells were transfected with siRNAs targeting the α7 nAChR subunit and/or exposed to Aβ1-42. For α7 nAChR, BACE1 (cleaving at the β-site of APP) and BACE2 (cleaving within the Aβ domain), α-secretase (ADAM10), and the two components of γ-secretase, PS and NCT, the mRNA and protein levels were determined by real-time PCR and Western blotting, respectively. The level of Aβ1-42 in the cell culture medium was determined by an ELISA procedure. The extent of lipid peroxidation and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were assayed spectrophotometrically. In the transfected SH-SY5Y cells, expression of α7 nAChR was reduced; the level of BACE1 increased and that of BACE2 decreased; the amount of ADAM10 lowered; and the level of PS raised. Moreover, the level of Aβ1-42 in the culture medium was elevated. Treatment of non-transfected cells with Aβ elevated the level of malondialdehyde (MDA) and lowered the activities of SOD and GSH-Px and these changes were potentiated by inhibiting expression of α7 nAChR. These results indicate that α7 nAChR plays a significant role in amyloidogenic metabolism of APP and the oxidative stress evoked by Aβ, suggesting that this receptor might help protect against the neurotoxicity of Aβ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.