Protein S-sulfhydration (forming -S-SH adducts from cysteine residues) is a newly defined oxidative posttranslational modification and plays an important role in H2S-mediated signaling pathways. In this study we report the first selective, “tag-switch” method which can directly label protein S-sulfhydrated residues by forming stable thioether conjugates. Furthermore we demonstrate that H2S alone cannot lead to S-sulfhydration and that the two possible physiological mechanisms include reaction with protein sulfenic acids (P-SOH) or the involvement of metal centers which would facilitate the oxidation of H2S to HSC.
Hydrogen sulfide (H2S) has emerged as new member of the gaseous transmitter family of signaling molecules and appears to play a regulatory role in the cardiovascular and nervous systems. Recent studies suggest that protein cysteine S-sulfhydration may function as a mechanism for transforming the H2S signal into a biological response. However, selective detection of S-sulfhydryl modifications is challenging since the persulfide group (RSSH) exhibits reactivity akin to other sulfur species, especially thiols. A modification of the biotin switch technique, using S-methyl methanethiosulfonate (MMTS) as an alkylating reagent, was recently used to identify a large number of proteins that may undergo S-sulfhydration, but the underlying mechanism of chemical detection was not fully explored. To address this key issue, we have developed a protein persulfide model and analog of MMTS, S-4-bromobenzyl methanethiosulfonate (BBMTS). Using these new reagents, we investigated the chemistry in the modified biotin switch method and examined the reactivity of protein persulfides toward different electrophile/nucleophile species. Together, our data affirm the nucleophilic properties of the persulfide sulfane sulfur and afford new insights into protein S-sulfhydryl chemistry, which may be exploited in future detection strategies.
His research focuses on peptide/ protein therapeutics and the development of novel peptide/protein chemistries. Figure 6. Examples of regiospecifically constructing fourdisulfide bonds. A) four disulfide-containing single-chainpeptides and B) four disulfide-containing two-chainpeptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.