Galloway-Mowat syndrome (GAMOS) is a severe autosomal-recessive disease characterized by the combination of early-onset steroid-resistant nephrotic syndrome (SRNS) and microcephaly with brain anomalies. To date, mutations of WDR73 are the only known monogenic cause of GAMOS and in most affected individuals the molecular diagnosis remains elusive. We here identify recessive mutations of OSGEP, TP53RK, TPRKB, or LAGE3, encoding the 4 subunits of the KEOPS complex in 33 individuals of 30 families with GAMOS. CRISPR/Cas9 knockout in zebrafish and mice recapitulates the human phenotype of microcephaly and results in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibits cell proliferation, which human mutations fail to rescue, and knockdown of either gene activates DNA damage response signaling and induces apoptosis. OSGEP and TP53RK molecularly interact and co-localize with the actin-regulating ARP2/3 complex. Furthermore, knockdown of OSGEP and TP53RK induces defects of the actin cytoskeleton and reduces migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identify 4 novel monogenic causes of GAMOS, describe the first link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.
Whole exome sequencing is a sensitive approach toward diagnosis of monogenic causes of steroid-resistant nephrotic syndrome. A molecular genetic diagnosis of steroid-resistant nephrotic syndrome may have important consequences for the management of treatment and kidney transplantation in steroid-resistant nephrotic syndrome.
Nucleoporins (NUPs) are essential components of the nuclear pore complex (NPC).1 Only few diseases have been attributed to NPC dysfunction.2-4 Steroid resistant nephrotic syndrome (SRNS), a frequent cause of chronic kidney disease, is caused by dysfunction of glomerular podocytes.5 Here we identify in 8 families with SRNS mutations of NUP93, its interaction partner NUP205, or exportin5 (XPO5) as a hitherto unrecognized monogenic cause of SRNS. NUP93 mutations caused disrupted NPC assembly. NUP93 knockdown reduced the presence of NUP205 in the NPC and, reciprocally, a NUP205 mutation abrogated NUP93 interaction. We demonstrate that NUP93 and XPO5 interact with the signaling protein SMAD4, and that NUP93 mutations abrogated interaction with SMAD4. Significantly, NUP93 mutations interfered with BMP7-induced SMAD transcriptional reporter activity. We hereby demonstrate that mutations of NUPs cause a distinct renal disease, and reveal SMAD signaling as a novel disease mechanism of SRNS, opening a potential new avenue for treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.