Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre-including this research content-immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Background: Since mid-December 2019, a cluster of pneumonia-like diseases caused by a novel coronavirus, now designated COVID-19 by the WHO, emerged in Wuhan city and rapidly spread throughout China. Here we identify the clinical characteristics of COVID-19 in a cohort of patients in Shanghai.Methods: Cases were confirmed by real-time RT-PCR and were analysed for demographic, clinical, laboratory and radiological features. Results:Of 198 patients, the median duration from disease onset to hospital admission was 4 days. The mean age of the patients was 50.1 years, and 51.0% patients were male. The most common symptom was fever. Less than half of the patients presented with respiratory systems including cough, sputum production, itchy or sore throat, shortness of breath, and chest congestion. 5.6% patients had diarrhoea. On admission, T lymphocytes were decreased in 45.8% patients. Ground glass opacity was the most common radiological finding on chest computed tomography. 9.6% were admitted to the ICU because of the development of organ dysfunction. Compared with patients not treated in ICU, patients treated in the ICU were older, had longer waiting time to admission, fever over 38.5 o C, dyspnoea, reduced T lymphocytes, elevated neutrophils and organ failure. Conclusions:In this single centre cohort of COVID-19 patients, the most common symptom was fever, and the most common laboratory abnormality was decreased blood T cell counts. Older age, male, fever over 38.5 o C, symptoms of dyspnoea, and underlying comorbidity, were the risk factors most associated with severity of disease. MethodsPatients. We obtained epidemiological, demographic, clinical, laboratory and management data from the medical records of patients infected with SARS-Cov-2. On Jan 20, 2020, the first human case of in Shanghai was confirmed. Since then all hospitals in Shanghai have opened special fever clinics to screen suspected patients, and laboratory confirmed patients were then admitted to a single designated hospital in Shanghai (Shanghai Public Health Clinical Centre). Laboratory confirmation of COVID-19 was done by the Chinese Centre for Disease Control and Prevention. Throat-swab specimens from the upper respiratory tract were obtained from all patients at admission and maintained in viral transport medium. COVID-19 was confirmed by real-time RT-PCR using the same protocol as described previously 3 . Confirmed patients were hospitalized into negative pressure wards for further medical observation and treatment. We collected data from patients who were admitted from Jan. 20 up to Feb. 15. All the data collected from the included cases have been shared with the WHO. Data Collection. Epidemiological exposure data, patient characteristics, clinical symptoms, laboratory and imaging findings and medical history were extracted from electronic medical records and analysed by licensed physicians. Laboratory data were recorded in standardized form. Initial investigations included a complete blood count, routine urinalysis, blood gases, coagulation...
FAM3A belongs to a novel cytokine-like gene family, and its physiological role remains largely unknown. In our study, we found a marked reduction of FAM3A expression in the livers of db/db and high-fat diet (HFD)-induced diabetic mice. Hepatic overexpression of FAM3A markedly attenuated hyperglycemia, insulin resistance, and fatty liver with increased Akt (pAkt) signaling and repressed gluconeogenesis and lipogenesis in the livers of those mice. In contrast, small interfering RNA (siRNA)-mediated knockdown of hepatic FAM3A resulted in hyperglycemia with reduced pAkt levels and increased gluconeogenesis and lipogenesis in the livers of C57BL/6 mice. In vitro study revealed that FAM3A was mainly localized in the mitochondria, where it increases adenosine triphosphate (ATP) production and secretion in cultured hepatocytes. FAM3A activated Akt through the p110a catalytic subunit of PI3K in an insulin-independent manner. Blockade of P2 ATP receptors or downstream phospholipase C (PLC) and IP3R and removal of medium calcium all significantly reduced FAM3A-induced increase in cytosolic free Ca 21 levels and attenuated FAM3A-mediated PI3K/Akt activation. Moreover, FAM3A-induced Akt activation was completely abolished by the inhibition of calmodulin (CaM). Conclusion: FAM3A plays crucial roles in the regulation of glucose and lipid metabolism in the liver, where it activates the PI3K-Akt signaling pathway by way of a Ca 21 /CaM-dependent mechanism. Up-regulating hepatic FAM3A expression may represent an attractive means for the treatment of insulin resistance, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD). (HEPATOLOGY 2014;59:1779-1790 T ype 2 diabetes has become one of the most prevalent and debilitating chronic diseases, with a global prevalence 6.4%, affecting about 285 million adults in the year 2010.1 Hepatic insulin resistance and fatty liver play a crucial role in the development and progression of type 2 diabetes. Liver is the key tissue regulating release of glucose into circulation during the fasting state, and hepatic insulin resistance is a decisive factor causing fasting hyperglycemia and type 2 diabetes. The liver is also one of the major organs regulating triglyceride (TG) and cholesterol (CHO) metabolism.2 Hepatic insulin resistance is mainly described as the failure of insulin to repress the expression of gluconeogenic genes through the PI3K/ Akt signaling pathway and is closely associated with the dysregulation of glucose and lipid metabolism in the liver.2 Although the underlying mechanisms remain largely unknown, increasing evidence points to
Vascular smooth muscle cells (VSMCs) are the fundamental component of the medial layer of arteries and are essential for arterial physiology and pathology. It is becoming increasingly clear that VSMCs can alter their metabolism to fulfill the bio-energetic and biosynthetic requirements. During vascular injury, VSMCs switch from a quiescent "contractile" phenotype to a highly migratory and proliferative "synthetic" phenotype. Recent studies find that the phenotype switching of VSMCs is driven by a metabolic switch. Metabolic pathways, including aerobic glycolysis, fatty acid oxidation, and amino acid metabolism, have distinct, indispensable roles in normal and dysfunctional vasculature. VSMCs metabolism is also related to the metabolism of endothelial cells. In the present review, we present a brief overview of VSMCs metabolism, and how it regulates the progression of several vascular diseases, including atherosclerosis, systemic hypertension, diabetes, pulmonary hypertension, vascular calcification, and aneurysms, and the effect of the risk factors for vascular disease (aging, cigarette smoking and excessive alcohol drinking) on VSMCs metabolism, to clarify the role of VSMCs metabolism in the key pathological process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.