PTEN is frequently mutated in human cancers and PTEN mutants promote tumor progression and metastasis. PTEN mutations have been implicated in immune regulation, however, the underlying mechanism is largely unknown. Here, we report that PTENα, the isoform of PTEN, remains active in cancer bearing stop-gained PTEN mutations. Through counteraction of CD8+ T cell-mediated cytotoxicity, PTENα leads to T cell dysfunction and accelerates immune-resistant cancer progression. Clinical analysis further uncovers that PTENα-active mutations suppress host immune responses and result in poor prognosis in cancer as relative to PTENα-inactive mutations. Furthermore, germline deletion of Ptenα in mice increases cell susceptibility to immune attack through augmenting stress granule formation and limiting synthesis of peroxidases, leading to massive oxidative cell death and severe inflammatory damage. We propose that PTENα protects tumor from T cell killing and thus PTENα is a potential target in antitumor immunotherapy.
RIG-I/DDX58 plays a key role in host innate immunity. However, its therapeutic potential for inflammation-related cancers remains to be explored. Here we identify frameshift germline mutations of RIG-I occurring in patients with colon cancer. Accordingly, Rig-ifs/fs mice bearing a frameshift mutant Rig-i exhibit increased susceptibility to colitis-related colon cancer as well as enhanced inflammatory response to chemical, virus or bacteria. In addition to interruption of Rig-i mRNA translation, the Rig-i mutation changes the secondary structure of Rig-i pre-mRNA and impairs its association with DHX9, consequently inducing a circular RNA generation from Rig-i transcript, thereby, designated as circRIG-I. CircRIG-I is frequently upregulated in colon cancers and its upregulation predicts poor outcome of colon cancer. Mechanistically, circRIG-I interacts with DDX3X, which in turn stimulates MAVS/TRAF5/TBK1 signaling cascade, eventually activating IRF3-mediated type I IFN transcription and aggravating inflammatory damage. Reciprocally, all-trans retinoic acid acts as a DHX9 agonist, ameliorates immunopathology through suppression of circRIG-I biogenesis. Collectively, our results provide insight into mutant RIG-I action and propose a potential strategy for the treatment of colon cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.