This study proposes a fractional gradient descent (FGD) algorithm for FIR models with missing data. By using the auxiliary model method, the missing data can be obtained. Then, the FGD algorithm is applied to update the parameters of the FIR models. Because of the fractional term in the conventional GD algorithm, the convergence rates of the GD algorithm can be increased. In addition, to avoid the step-size calculation, an Aitken FGD-based auxiliary model algorithm is also introduced. The convergence analysis and simulation examples are provided to show the effectiveness of the proposed algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.