Kwashiorkor, an enigmatic form of severe acute malnutrition, is the consequence of inadequate nutrient intake plus additional environmental insults. To investigate the role of the gut microbiome, we studied 317 Malawian twin pairs during the first 3 years of life. During this time, half of the twin pairs remained well-nourished, while 43% became discordant and 7% manifested concordance for acute malnutrition. Both children in twin pairs discordant for kwashiorkor were treated with a peanut-based, ready-to-use therapeutic food (RUTF). Time-series metagenomic studies revealed that RUTF produced a transient maturation of metabolic functions in kwashiorkor microbiomes that regressed when RUTF was stopped. Previously frozen fecal communities from several discordant pairs were each transplanted into gnotobiotic mice. The combination of Malawian diet and kwashiorkor microbiome produced marked weight loss in recipient mice, accompanied by perturbations in amino acid, carbohydrate and intermediary metabolism that were only transiently ameliorated with RUTF. These findings implicate the gut microbiome as a causal factor in kwashiorkor.
Rates of colon cancer are much higher in African Americans (65:100,000) than in rural South Africans (<5:100,000). The higher rates are associated with higher animal protein and fat and lower fiber consumption, higher colonic secondary bile acids, lower colonic short chain fatty acid quantities and higher mucosal proliferative biomarkers of cancer risk in otherwise healthy middle aged volunteers. Here we investigate further the role of fat and fiber in this association. We performed two-week food exchanges in subjects from the same populations, where African Americans were fed a high-fiber, lowfat African-style diet, and rural Africans a high-fat low-fiber western-style diet under close supervision. In comparison to their usual diets, the food changes resulted in remarkable reciprocal changes in mucosal biomarkers of cancer risk and in aspects of the microbiota and metabolome known to affect cancer risk, best illustrated by increased saccharolytic fermentation and butyrogenesis and suppressed secondary bile acid synthesis in the African Americans.
The symbiotic gut microbiota modulate health and disease of the host through a series of transgenomic metabolic and immune regulatory axes. We explore connections between microbiome composition and function related to individual metabolic phenotypes and consider these interactions as possible targets for developing new personalized therapies and clinical management strategies.
Ultra-performance liquid chromatography coupled to mass spectrometry (UPLC/MS) has been used increasingly for measuring changes of low molecular weight metabolites in biofluids/tissues in response to biological challenges such as drug toxicity and disease processes. Typically samples show high variability in concentration, and the derived metabolic profiles have a heteroscedastic noise structure characterized by increasing variance as a function of increased signal intensity. These sources of experimental and instrumental noise substantially complicate information recovery when statistical tools are used. We apply and compare several preprocessing procedures and introduce a statistical error model to account for these bioanalytical complexities. In particular, the use of total intensity, median fold change, locally weighted scatter plot smoothing, and quantile normalizations to reduce extraneous variance induced by sample dilution were compared. We demonstrate that the UPLC/MS peak intensities of urine samples should respond linearly to variable sample dilution across the intensity range. While all four studied normalization methods performed reasonably well in reducing dilution-induced variation of urine samples in the absence of biological variation, the median fold change normalization is least compromised by the biologically relevant changes in mixture components and is thus preferable. Additionally, the application of a subsequent log-based transformation was successful in stabilizing the variance with respect to peak intensity, confirming the predominant influence of multiplicative noise in peak intensities from UPLC/MS-derived metabolic profile data sets. We demonstrate that variance-stabilizing transformation and normalization are critical preprocessing steps that can benefit greatly metabolic information recovery from such data sets when widely applied chemometric methods are used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.