Tumor neoantigen is the truly foreign protein and entirely absent from normal human organs/tissues. It could be specifically recognized by neoantigen-specific T cell receptors (TCRs) in the context of major histocompatibility complexes (MHCs) molecules. Emerging evidence has suggested that neoantigens play a critical role in tumor-specific T cell-mediated antitumor immune response and successful cancer immunotherapies. From a theoretical perspective, neoantigen is an ideal immunotherapy target because they are distinguished from germline and could be recognized as non-self by the host immune system. Neoantigen-based therapeutic personalized vaccines and adoptive T cell transfer have shown promising preliminary results. Furthermore, recent studies suggested the significant role of neoantigen in immune escape, immunoediting, and sensitivity to immune checkpoint inhibitors. In this review, we systematically summarize the recent advances of understanding and identification of tumor-specific neoantigens and its role on current cancer immunotherapies. We also discuss the ongoing development of strategies based on neoantigens and its future clinical applications.
METHODS. Two different pipelines of neoantigen identification were established in this study: (a) Clinical-grade targeted sequencing was performed in patients with refractory solid tumor, and mutant peptides with high variant allele frequency and predicted high HLA-binding affinity were synthesized de novo. (b) An inventory-shared neoantigen peptide library of common solid tumors was constructed, and patients' hotspot mutations were matched to the neoantigen peptide library. The candidate neoepitopes were identified by recalling memory T cell responses in vitro. Subsequently, neoantigen-loaded dendritic cell vaccines and neoantigen-reactive T cells were generated for personalized immunotherapy in 6 patients. RESULTS. Immunogenic neoepitopes were recognized by autologous T cells in 3 of 4 patients who used the de novo synthesis mode and in 6 of 13 patients who used the shared neoantigen peptide library. A metastatic thymoma patient achieved a complete and durable response beyond 29 months after treatment. Immune-related partial response was observed in another patient with metastatic pancreatic cancer. The remaining 4 patients achieved prolonged stabilization of disease with a median progression-free survival of 8.6 months. CONCLUSION. The current study provides feasible pipelines for neoantigen identification. Implementing these strategies to individually tailor neoantigens could facilitate neoantigen-based translational immunotherapy research.
The recent successes of tumor immunotherapy approaches, such as immune checkpoint blockade (ICB) and chimeric antigen receptor T cell (CAR-T) therapy, have revolutionized cancer treatment, improving efficacy and extending treatment to a larger proportion of cancer patients. However, due to high heterogeneity of cancer, poor tumor cell targeting, and the immunosuppressive status of the tumor microenvironment (TME), combinatorial agents are required to obtain more effective and consistent therapeutic responses in a wide range of cancers. Oncolytic viruses (OVs) are able to selectively replicate in and destroy tumor cells and subsequently induce systematic anti-tumor immune responses. Thus, they are ideal for combining with cancer immunotherapy. In this review, we discuss the current understanding of OVs, as well as the latest preclinical and clinical progress of combining OVs with cancer immunotherapies, including ICB, CART therapy, bispecific T cell engagers (BiTEs), and cancer vaccines. Moreover, we consider future directions for applying OVs to personalized cancer immunotherapies, which could potentially launch a new generation of cancer treatments.
Limited tumor permeability of therapeutic agents is a great challenge faced by current cancer therapy methods. Herein, a kind of near infrared light (NIR)‐driven nanomotor with autonomous movement, targeted ability, hierarchical porous structure, multi‐drugs for cancer chemo/photothermal therapy is designed, prepared and characterized. Further, we establish a method to study the interaction between nanomotors and cells, along with their tumor permeability mechanism, including 2D cellular models, 3D multicellular tumor spheroids and in vivo models. In vivo tumor elimination results verify that the movement behaviour of the nanomotors can greatly facilitate them to eliminate tumor through multiple therapeutic methods. This work tries to establish systematic research and evaluation models, providing strategies to understand the relationship between motion behaviour and tumor permeation efficiency of nanomotors in depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.