Abdominal aortic aneurysms (AAAs) are local dilations of infrarenal segment of aortas. Molecular mechanisms underlying the pathogenesis of AAA remain not fully clear. However, inflammation has been considered as a central player in the development of AAA. In the past few decades, studies demonstrated a host of inflammatory cells, including T cells, macrophages, dendritic cells, neutrophils, B cells, and mast cells, etc. infiltrating into aortic walls, which implicated their crucial roles. In addition to direct cell contacts and cytokine or protease secretions, special structures like inflammasomes and neutrophil extracellular traps have been investigated to explore their functions in aneurysm formation. The above-mentioned inflammatory cells and associated structures may initiate and promote AAA expansion. Understanding their impacts and interaction networks formation is meaningful to develop new strategies of screening and pharmacological interventions for AAA. In this review, we aim to discuss the roles and mechanisms of these inflammatory cells in AAA pathogenesis.
BackgroundMesenchymal stem cells (MSCs) have been broadly used experimentally in various clinical contexts. The addition of MSCs to initial steroid therapy for acute graft-versus-host disease (aGVHD) may improve patient outcomes. However, investigations regarding prognostic factors affecting the efficacy of MSC therapy for steroid-refractory aGVHD remain controversial. We thus conducted a systematic review and meta-analysis of published clinical trials to determine possible prognostic factors affecting the efficacy of MSCs in treating steroid-refractory aGVHD.Methods and FindingsClinical trials using MSC therapy for steroid-refractory aGVHD were identified by searching PubMed and EMBASE databases. A total of 6,963 citations were reviewed, and 13 studies met the inclusion criteria. A total of 301 patients from thirteen studies were included. Of these, 136 patients showed a complete response (CR), and 69 patients displayed a partial (PR) or mixed response (MR). In total, 205 patients exhibited overall response (ORR). Patients with skin steroid-refractory aGVHD showed a better clinical response than gastrointestinal (CR: odds ratio [OR] = 1.93, 95% confidence interval [95%CI]: 1.05–3.57, p < 0.05) and liver (CR: OR = 2.30, 95%CI: 1.12–4.69, p < 0.05, and ORR: OR = 2.93, 95%CI: 1.06–8.08, p < 0.05) steroid-refractory aGVHD. Those with grade II steroid-refractory aGVHD exhibited a better clinical response following MSC therapy than recipients with grade III–IV (CR: OR = 3.22, 95%CI: 1.24–8.34, p < 0.05). Completion therapy may improve the CR but reduce ORR compared with induction therapy (CR: OR = 0.20, 95%CI: 0.09–0.44, p < 0.05; ORR: OR = 2.18, 95%CI: 1.17–4.05, p = 0.01). There was also a trend towards a better clinical response in children compared with adults (CR: OR = 2.41, 95%CI: 1.01–5.73, p = 0.05).ConclusionsAge, skin involvement, lower aGVHD grade, and the number of infusions are the main prognostic factors affecting the efficacy of MSC therapy for steroid-refractory aGVHD.
Preeclampsia is triggered by an as yet unknown toxin from the placenta. Antiphospholipid antibodies (aPL), a strong risk factor for preeclampsia, have been shown to induce the production of toxic trophoblastic debris from the placenta. High mobility group box 1 (HMGB1) is a proinflammatory danger signal, and the expression of it has been reported to be increased in preeclampsia. This study examined whether aPL or preeclamptic sera increase the expression of HMGB1 in the syncytiotrophoblast or trophoblastic debris. Trophoblastic debris from normal placental explants that had been cultured with aPL or preeclamptic sera was exposed to endothelial cells. Endothelial cell activation was quantified by cell-surface ICAM-1 expression and U937 monocyte adhesion. The expression of HMGB1 in placental explants and trophoblastic debris that had been treated with aPL or preeclamptic sera was measured by immunohistochemistry and western blotting. The expression of the receptor for advanced glycation end products (RAGE) in endothelial cells was quantified by western blotting. Compared with controls, the expression of HMGB1 in the cytoplasm of the syncytiotrophoblast and trophoblastic debris was increased by treating placental explants with aPL or preeclamptic sera. The increased levels of HMGB1 contributed to endothelial cell activation, mediated in part by the RAGE. Preeclamptic sera and aPL both induced an increase in the cytoplasmic levels of the danger signal HMGB1 in trophoblastic debris. This increased HMGB1 in trophoblastic debris may be one of the toxic factors released from the placenta in preeclampsia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.