Anti-E2, syn-E2, inv-, and ret-S2 reaction channels for the gas-phase reaction of F + CHCHI were characterized with a variety of electronic structure calculations. Geometrical analysis confirmed synchronous E2-type transition states for the elimination of the current reaction, instead of nonconcerted processes through E1cb-like and E1-like mechanisms. Importantly, the controversy concerning the reactant complex for anti-E2 and inv-S2 paths has been clarified in the present work. A positive barrier of +19.2 kcal/mol for ret-S2 shows the least feasibility to occur at room temperature. Negative activation energies (-16.9, -16.0, and -4.9 kcal/mol, respectively) for inv-S2, anti-E2, and syn-E2 indicate that inv-S2 and anti-E2 mechanisms significantly prevail over the eclipsed elimination. Varying the leaving group for a series of reactions F + CHCHY (Y = F, Cl, Br, and I) leads to monotonically decreasing barriers, which relates to the gradually looser TS structures following the order F > Cl > Br > I. The reactivity of each channel nearly holds unchanged except for the perturbation between anti-E2 and inv-S2. RRKM calculation reveals that the reaction of the fluorine ion with ethyl iodide occurs predominately via anti-E2 elimination, and the inv-S2 pathway is suppressed, although it is energetically favored. This phenomenon indicates that, in evaluating the competition between E2 and S2 processes, the kinetic or dynamical factors may play a significant role. By comparison with benchmark CCSD(T) energies, MP2, CAM-B3LYP, and M06 methods are recommended to perform dynamics simulations of the title reaction.
The radical-molecule reaction mechanism of CH3 with NOx (x = 1, 2) has been explored theoretically at the B3LYP/6-311Gd,p and MC-QCISD (single-point) levels of theory. For the singlet potential energy surface (PES) of the CH3 + NO2 reaction, it is found that the carbon to middle nitrogen attack between CH3 and NO2 can form energy-rich adduct a (H3CNO2) with no barrier followed by isomerization to b1 (CH3ONO-trans), which can easily convert to b2 (CH3ONO-cis). Subsequently, starting from b (b1, b2), the most feasible pathway is the direct N-O bond cleavage of b (b1, b2) leading to P1 (CH3O + NO) or the 1,3-H-shift and N-O bond rupture of b1 to form P2 (CH2O + HNO), both of which may have comparable contribution to the reaction CH3 + NO2. Much less competitively, b2 can take a concerted H-shift and N-O bond cleavage to form product P3 (CH2O + HON). Because the intermediates and transition states involved in the above three channels are all lower than the reactants in energy, the CH3 + NO2 reaction is expected to be rapid, as is consistent with the experimental measurement in quality. For the singlet PES of the CH3 + NO reaction, the major product is found to be P1 (HCN + H2O), whereas the minor products are P2 (HNCO + H2) and P3 (HNC +H2O). The CH3 + NO reaction is predicted to be only of significance at high temperatures because the transition states involved in the most feasible pathways lie almost above the reactants. Compared with the singlet pathways, the triplet pathways may have less contributions to both reactions. The present study may be helpful for further experimental investigation of the title reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.