Lucaogou formation in Jimsar sag is host to large quantities of bedding fractures which are known to play a critical role in the enrichment, accumulation, and efficient development of tight oil. In this paper, we examine and finely characterize the development of the bedding fractures found in the upper and lower sweet spots of Lucaogou formation of tight oil reservoir through field outcrop and core observation, cast thin section analysis, and imaging log recognition and investigate the factors affecting their differentiated oil-bearing by means of inclusion temperature measurement, TOC testing, physical property testing, high-pressure mercury injection, and physical simulation experiment. By comparison with the linear density, bedding fractures are more developed in the lower sweet spot. These fractures occur in parallel to the formation boundary and have small aperture. Most of bedding fractures are unfilled fractures. Among the few types of fractures found there, bedding fractures have the best oil-bearing property, but the oil-bearing can differ from one bedding fracture to another. The factors affecting the differentiated oil-bearing of bedding fractures include the temporal coupling of the formation of these fractures with the hydrocarbon generation of the source rocks and the spatial coupling of the bedding fractures with the source rocks. In terms of temporal coupling, mass hydrocarbon generation in Jimsar sag began in Late Jurassic. Inclusion temperature measurement indicates that the bedding fractures there formed in or after Early Cretaceous. Hence, by matching the mass hydrocarbon generation period of the source rocks with the formation period of the bedding fractures, we discovered that the bedding fractures formed within the mass hydrocarbon generation period, which favored the oil-bearing of these fractures. The spatial coupling is manifested in TOC, porosity, permeability, and pore throat, with TOC being the main controlling factor. For TOC, the higher the formation TOC, the better the oil-bearing property of the bedding fractures. For porosity, subject to the TOC level, if the TOC is adequate, the larger the porosity, the larger the chloroform asphalt “A,” accordingly the higher the oil content of the formation, and the better the oil-bearing property of the bedding fractures developed therein. In this sense, in terms of spatial coupling, TOC constitutes the main controlling factor of the oil-bearing property of bedding fractures.
Due to the complexity of underground engineering, study on creep characteristics of surrounding rock mainly adopts laboratory simulation experiment. Recently, the similar materials are used to do the experiment both at home and abroad, yet it can't reflect the original nature and others of rock fissure in original rock mass. Through the field collection of undisturbed sample of Tertiary mudstone, the conclusions are made by laboratory model test on surrounding rock of underground tunnel and creep process regularity and failure mechanism in the surrounding rock in this paper as follows: there are three obvious stages of creep under certain stress levels, which is measured on the surface of surrounding rock mass in argillaceous soft rock tunnel--decay creep ,steady creep and accelerated creep. The surrounding rock will produce the accelerated creep damage when the stress level is over a threshold value. Creep damage of surrounding rock mainly includes the forms of roof sinking, floor working up, and forming a macro- fracture surfaces etc. Test results showed that the undisturbed surrounding rock fracture would be dissimilar to the homogeneous surrounding rock without fracture in damage model, and original fissure have a larger effect on creep damage of surrounding rock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.