Low-gluten rice is part of a special diet for chronic kidney disease patients, but its digestive mechanism in the gastrointestinal tract is unclear. In this study, low-gluten rice (LGR), common rice (CR), and rice starch (RS) were used as experimental samples, and their digestion and bacterial fermentation were simulated using an in vitro gastrointestinal reactor to investigate the mechanism of the effect of LGR on human health. The starch digestibility of CR was higher than that of LGR, with statistically significant differences. LGR has growth-promoting and metabolic effects on Akkermansia muciniphila. Among the beneficial metabolites, the concentration of short-chain fatty acids (SCFAs) from LGR reached 104.85 mmol/L, an increase of 44.94% (versus RS) and 25.33% (versus CR). Moreover, the concentration of lactic acid reached 18.19 mmol/L, an increase of 60.55% (versus RS) and 25.28% (versus CR). Among the harmful metabolites, the concentration of branched-chain fatty acids (BCFAs) in LGR was 0.29 mmol/L and the concentration of ammonia was 2.60 mmol/L, which was 79.31% and 16.15% lower than CR, respectively. A significant increase in the concentration of the beneficial intestinal bacteria Bacteroides and Bifidobacterium occurred from LGR. The 16s rDNA sequencing showed that the abundance of the Bacteroidetes and Firmicutes increased and the abundance of the Proteobacteria and Fusobacteria decreased. Thus, LGR has positive effects on digestion and gut microbiota structure and metabolism in humans.
Enzymes from thermophilic microorganisms usually show high thermostability, which is of great potential in industrial application; to understand the structural logic of these enzymes is helpful for the construction of robust biocatalysts. In this study, based on the crystal structure of an N-demethylase�TrSOX�with outstanding thermostability from Thermomicrobium roseum, substitutions were introduced on the aggregation interface and rigid spots to reduce the aggregation ratio and the rigidity. Four substitutions on the aggregation interface�V162S, M308S, F170S, and V306S�considerably reduced the thermostability and slightly enhanced the catalytic efficiency. In addition, the thermostable framework was considerably disrupted in several multiple P → G substitutions in several local motifs (P129G/P134G, P237G/P259G, and P259G/P276G). These structural fluctuations were in good accordance with whole-structure or partial root-mean-square deviation, radius of gyration H-bonds, and solvent-accessible surface area values in molecular dynamics simulation. Furthermore, these key spots were introduced into an unstable homolog from Bacillus sp., resulting in a dramatical increase in the half-life at 60 °C from <10 to 1440 min. These results could help understand the natural stable framework of thermophilic enzymes, which could be references for the construction of robust enzymes in industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.