An antimicrobial peptide, LL-37, is found in an innate defense system of humans. Patients who suffer urinary tract infection (UTI) will generate LL-37 and which is released into urine. LL-37 can be used as an indicator for the diagnosis of UTI. We have designed a biosensor with an interdigitated electrode on a printed-circuit board (PCB). The surface of the electrode was modified with 3-mercaptopropionic acid and immobilized with anti-LL37 antibody to improve the specificity of the biosensor. By de-embedding jig impedance, the impedance associated with the change of LL-37 concentration was calculated. The sensitivity of this biosensor for LL-37 in a urine sample can reach 50 μg/mL.
Solder/Cu joints are important components responsible for interconnection in microelectronics. Construction of the solder/Cu joints through liquid/solid (L/S) reactions accompanies the formation of the Cu–Sn intermetallic compounds (IMCs) at the joint interface. The Cu6Sn5 IMC exhibits remarkable distinctions in thickness and morphology upon increasing the L/S reaction time. Effects of the initial characteristics of thickness and morphology on the growth kinetics of Cu6Sn5 during subsequent isothermal aging were investigated. SAC305 solder was reflowed on a Cu electroplated layer at 265 °C for 1 to 60 min to produce the Cu6Sn5 IMC with different thickness and morphology at the SAC305/Cu interface. The as-fabricated SAC305/Cu joint samples were aged at 200 °C for 72 to 360 h to investigate the growth kinetics of Cu6Sn5. The results show that the initial characteristics of thickness and morphology significantly influenced the growth kinetics of Cu6Sn5 during the subsequent solid/solid (S/S) reaction. A prolonged L/S reaction time of 60 min (L/S-60) produced a scallop-type Cu6Sn5 IMC with a larger grain size and a thicker thickness, which reduced the quantity of fast diffusion path (grain boundary) and the magnitude of concentration gradient, thus slowing down the growth rate of Cu6Sn5. According to the growth kinetics analysis, the growth rate constant of Cu6Sn5 could be remarkably reduced to 0.151 µm/h0.5 for the L/S-60 sample, representing a significant reduction of 70 % compared to that of the L/S-1 sample (0.508 µm/h0.5 for L/S reaction time of 1 min).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.