Autophagy is a self-degradative process and it plays a housekeeping role in removing misfolded or aggregated proteins, clearing damaged organelles, and eliminating intracellular pathogens. Previous studies have demonstrated that autophagy pathway was activated in brain after experimental subarachnoid hemorrhage (SAH); however, the role of autophagy in the pathogenesis of early brain injury (EBI) following SAH remains unknown. Experiment 1 aimed to investigate the time-course of the autophagy in the cortex following SAH. In experiment 2, we chose the maximum time point of autophagy activation and assessed the effects of rapamycin (RAP, autophagy activator) and 3-methyladenine (3-MA, autophagy inhibitor) on regulation of EBI. All SAH animals were subjected to injection of 0.3 ml fresh arterial, nonheparinized blood into prechiasmatic cistern in 20 s. As a result, microtubule-associated protein light chain-3 (LC3), a biomarker of autophagosome, and beclin-1, a Bcl-2-interacting protein required for autophagy, were significantly increased at the early stage of SAH and their expressions peaked at 24 h after SAH. In RAP-treated group, the early brain damage such as brain edema, blood-brain barrier (BBB) impairment, cortical apoptosis, and clinical behavior scale was significantly ameliorated in comparison with vehicle-treated SAH rats. Conversely, 3-MA decreased expression of LC3 and beclin-1, increased the average value of brain edema and BBB disfunction, and aggravated neurological deficits. Our results suggest that autophagy pathway is activated in the brain after SAH and may play a beneficial role to EBI development.
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative treatment for acute myeloid leukemia (AML). However, most patients experience relapse after allo-HSCT, with a poor prognosis, and treatment options are limited. The lack of an ideal targetable antigen is a major obstacle for treating patients with relapsed AML. CD38 is known to be expressed on most AML and myeloma cells, and its lack of expression on hematopoietic stem cells (HSCs) renders it a potential therapeutic target for relapsed AML. To investigate the clinical therapeutic efficacy and safety of CD38-targeted chimeric antigen receptor T (CAR-T-38) cells, we enrolled 6 AML patients who experienced relapse post-allo-HSCT (clinicaltrials.gov: NCT04351022). Prior to CAR-T-38 treatment, the blasts in the bone marrow of these patients exhibited a median of 95% (92–99%) CD38 positivity. Four weeks after the initial infusion of CAR-T-38 cells, four of six (66.7%) patients achieved complete remission (CR) or CR with incomplete count recovery (CRi); the median CR or CRi time was 191 (range 117–261) days. The cumulative relapse rate at 6 months was 50%. The median overall survival (OS) and leukemia-free survival (LFS) times were 7.9 and 6.4 months, respectively. One case relapsed 117 days after the first CAR-T-38 cell infusion, with remission achieved after the second CAR-T-38 cell infusion. All six patients experienced clinically manageable side effects. In addition, multiparameter flow cytometry (FCM) revealed that CAR-T-38 cells eliminated CD38 positive blasts without off-target effects on monocytes and lymphocytes. Although this prospective study has a limited number of cases and a relatively short follow-up time, our preliminary data highlight the clinical utility and safety of CAR-T-38 cell therapy in treating relapsed AML post-allo-HSCT.
Background: Hydrogen sulfide (H 2 S) has shown a neuroprotective role in several cerebrovascular diseases. This study aimed to explore the underlying mechanisms of H 2 S in early brain injury after subarachnoid hemorrhage (SAH). Methods: One hundred seventy-seven male Sprague-Dawley rats were employed in this study. Sodium hydrosulfide (NaHS), a donor of H 2 S, was injected intraperitoneally at 60 min after SAH was induced by endovascular perforation. Western blot analysis determined the expression of several proteins of interest, and an immunofluorescence assay was used to examine neuronal apoptosis. Results: Exogenous NaHS markedly improved neurological scores, attenuated brain edema, and ameliorated neuronal apoptosis at 24 h after SAH induction. The underlying mechanisms of H 2 S in ameliorating neuronal apoptosis might be executed through inhibition of the activity of mammalian sterile 20-like kinase 1 (MST1) protein. Western blot analysis demonstrated that exogenous NaHS decreased cleaved MST1 (cl-MST1) while increasing full-length MST1 expression. This anti-apoptotic effect of H 2 S could be reversed by chelerythrine, which could activate MST1 via caspase-dependent cleavage. Conclusions: Exogenous NaHS, as a donor of H 2 S, could ameliorate early brain injury after SAH by inhibiting neuronal apoptosis by reducing the activity of the MST1 protein.
Drug-induced cardiotoxicity seriously affects human health and drug development. However, many conventional detection indicators of cardiotoxicity exhibit significant changes only after the occurrence of severe heart injuries. Therefore, we investigated more sensitive and reliable indicators for the evaluation and prediction of cardiotoxicity. We created rat cardiotoxicity models in which the toxicity was caused by doxorubicin (20 mg/kg), isoproterenol (5 mg/kg), and 5-fluorouracil (125 mg/kg). We collected data from rat plasma samples based on metabolomics using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Following multivariate statistical and integration analyses, we selected 39 biomarker ions of cardiotoxicity that predict cardiotoxicity earlier than biochemical analysis and histopathological assessment. Because drugs with different toxicities may cause similar metabolic changes compared with other noncardiotoxic models (hepatotoxic and nephrotoxic models), we obtained 10 highly specific biomarkers of cardiotoxicity. We subsequently used a support vector machine (SVM) to develop a predictive model to verify and optimize the exclusive biomarkers. l-Carnitine, 19-hydroxydeoxycorticosterone, LPC (14:0), and LPC (20:2) exhibited the strongest specificities. The prediction rate of the SVM model is as high as 90.0%. This research provides a better understanding of drug-induced cardiotoxicity in drug safety evaluations and secondary development and demonstrates novel ideas for verification and optimization of biomarkers via metabolomics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.