Glucagon-like peptide-1 (GLP-1) is secreted by intestinal L-cells following food intake, and plays an important role in glucose homeostasis due to its stimulation of glucose-dependent insulin secretion. Further, GLP-1 is also associated with protective effects on pancreatic β-cells and the cardiovascular system, decreased appetite, and weight loss, making GLP-1 derivatives an exciting treatment for type 2 diabetes and obesity. Despite these benefits, wild-type GLP-1 exhibits a short circulation time due to its poor metabolic stability and rapid renal clearance, and must be administered by injection, making it a poor therapeutic agent. Many strategies have been used to improve the circulation time of GLP-1 (e.g., mutations, unnatural amino acids, depot formulations, use of exendin-4 sequences, and fusions with high-molecular-weight proteins or polymers), with its therapeutic utility further improved by adding agonist activity for gastric inhibitory peptide and glucagon receptors. This minireview focuses on strategies that have been used to improve the pharmacokinetics of GLP-1 and provides an overview of GLP-1-based therapeutics in the pipeline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.