We introduce a one-dimensional spin injection structure comprising a ferromagnetic metal and a nondegenerate organic semiconductor to model electric current polarizations. With this model we analyse spin Coulomb dragging (SCD) effects on the polarization under various electric fields, interface and conductivity conditions. The results show that the SCD inhibits the current polarization. Thus the SCD inhibition should be well considered for accurate evaluation of current polarization in the design of organic spin devices.
Charge carriers in organic semiconductor are different from that of traditional inorganic semiconductor. Based on three-current model, considering electrical field effect, we present a theoretical model to discuss spin-polarized injection from ferromagnetic electrode into organic semiconductor by analyzing electrochemical potential both in ferromagnetic electrode and organic semiconductors. The calculated result of this model shows effects of electrode's spin polarization, equilibrium value of polarons ratio, interfacial conductance, bulk conductivity of materials and electrical field. It is found that we could get decent spin polarization with common ferromagnetic electrode by increasing equilibrium value of polarons ratio. We also find that large and matched bulk conductivity of organic semiconductor and electrode, small spin-dependent interfacial conductance, and enough large electrical field are critical factors for increasing spin polarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.