Kinetics of order-disorder transition at antiphase domain boundary (APDB) formed between DO22 (Ni3V) phases during stress aging was investigated using microscopic phase field model. The results demonstrated that whether order-disorder transition happens or not depends on the atomic structure of the APDB. Accompanied with the depletion of V and enrichment of Ni and Al, order-disorder transition happened at the APDB (001)//(002). Whereas at the APDB {100}·1⁄2[100], which remains ordered with temporal evolution, Ni and Al enrich and V depletes. Composition evolution of APDB with order-disorder transition favors the nucleation of the L12 and disordered phase. Some of the grains grew bigger while the others disappeared, accompanying the formation of disordered phase layer during order-disorder transition of APDBs, and the order-disorder transition of APDBs can be considered as accompanying process of coarsening of ordered domain phases and growth of disordered phases.
Dynamic analysis is performed for a crack in a functionally graded materials layer for plane problem using shear stress. The material properties of the functionally graded materials layer vary randomly in the thickness direction, and the cracks are parallel to the materials faces. A pair of dynamic loadings applied on the elastic planes faces are treated as stationary stochastic processes of time. By dividing the functionally graded materials layer into several sub-layers, this problem is reduced to the analysis of laminated composites containing a crack, the material properties of each layer being random variables. A fundamental problem is constructed for the solution. Based on the use of Laplace and Fourier transforms, the boundary conditions are reduced to a set of singular integral equations, which can be solved by the Chebyshev polynomial expansions. The stress intensity factor history with its statistics is analytically derived. Numerical calculations are provided to show the effects of related parameters.
Y2O3 crucibles have been prepared for as-cast Nb-22Ti-16Si-2Al-2Cr-2Hf and Nb-22Ti-16Si-2Al-2Cr alloys at 1950 °C. The microstructures, metal-crucible interfaces and contaminations were evaluated. Experimental results demonstrated that a mild interface reaction occurred between the Y2O3 crucibles and Hf, resulting in some inclusions dispersed in the metallic matrix. However, without Hf addition, no apparent reaction layers or inclusions were found. Both alloys were slightly contaminated with oxygen as the result of slow thermal dissociation of Y2O3, and its extent depended on Hf contents and holding times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.