Achieving high quantum efficiency in long-wavelength LEDs has posed a significant challenge to the solid-state lighting and display industries. In this article, we use V-defect engineering as a technique to achieve higher efficiencies in red InGaN LEDs on (111) Si through lateral injection. We investigate the effects of superlattice structure on the V-defect distribution, the electroluminescence properties, and the external quantum efficiency. Increasing the relative thickness of In in the InGaN/GaN superlattice and the total superlattice thickness correlate with a reduction of active region defects and increased external quantum efficiencies. The highest measured on-chip EQE was 0.15% and based on Monte-Carlo ray tracing simulations for light extraction we project this would correspond to a flip-chip EQE of ~2.5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.