Vessel flexure can be triggered naturally by surgical operation, heart pulsation and body movement. It may affect the mechanical behavior of the stent and the existence of a stent may in turn cause vessel injury. In the present study, the finite element method is employed to study the interaction between stent and vessel during vessel flexure. Two- and four-link stents made of stainless steel 316L and magnesium alloy WE43 are considered. Results indicate that longitudinal deformation of the stent can be caused by vessel flexure, and the higher levels of stress exist in the link struts. The existence of the stent could induce significant stress concentration and straightened deformation on vessel wall in the course of vessel flexure. Stents with more links or made of harder materials show greater anti-deformation capability, thus inducing a more severe stress concentration and straightened deformation on the vessel wall. The bending direction also affects the mechanical performance of the vessel-stent system. The results obtained could provide useful information for better stent designs and clinical decisions.
Flexibility is one of the important mechanical performance parameters of stent. The flexibility of tapered stents, especially self-expanding tapered stents, remains unknown. In this study, we developed a new selfexpanding tapered stent for tapered arteries and performed a numerical investigation of stent flexibility by using finite element method. The effect of stent design parameters, including taper and link space width, on stent flexibility was studied. The flexibility of the proposed stent was also compared with that of traditional cylindrical stents. Results show that the tapered stent is more flexible than the traditional cylindrical stent. Furthermore, the flexibility of the tapered stent increases with increasing stent taper and stent link space width. The increase in the stent link space width can contribute to the reduction in the peak stress. Therefore, tapered stents with high link space width will improve the stent flexibility. This work provides useful information for improvement of stent design and clinical selection.
The natural tapering of coronary arteries often creates a dilemma for optimal balloon sizing during stenting. The influence of different balloon types, namely, a tapered balloon and a conventional cylindrical balloon, on the mechanical performance of the stent as well as arterial mechanics was investigated via the finite element method. Stent free‐expansion and stent deployment in a stenotic tapered artery were investigated numerically. The biomechanical behavior of the two balloon types was compared in terms of stent foreshortening, stent deformation, stent stress distribution, and arterial wall stress distribution. Results indicate that balloon types affect the transient behavior of the stent and the arterial mechanics. Specifically, a tapered balloon could maintain the natural tapering of the coronary artery after stent expansion. In contrast to a cylindrical balloon, tapered balloon also mitigated the foreshortening of the stent (7.69%) as well as the stress concentration in the stent and artery (8.61% and 4.17%, respectively). Hence, tapered balloons should be used in tapered arteries as they may result in low risk of artery injury. This study might provide insights for improved balloon choice and presurgical planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.