The genetic algorithm (GA) is an effective method to solve the path-planning problem and help realize the autonomous navigation for and control of unmanned surface vehicles. In order to overcome the inherent shortcomings of conventional GA such as population premature and slow convergence speed, this paper proposes the strategy of increasing the number of offsprings by using the multi-domain inversion. Meanwhile, a second fitness evaluation was conducted to eliminate undesirable offsprings and reserve the most advantageous individuals. The improvement could help enhance the capability of local search effectively and increase the probability of generating excellent individuals. Monte-Carlo simulations for five examples from the library for the travelling salesman problem were first conducted to assess the effectiveness of algorithms. Furthermore, the improved algorithms were applied to the navigation, guidance, and control system of an unmanned surface vehicle in a real maritime environment. Comparative study reveals that the algorithm with multi-domain inversion is superior with a desirable balance between the path length and time-cost, and has a shorter optimal path, a faster convergence speed, and better robustness than the others.
Recently, issues of climate change, environment abnormality, individual requirements, and national defense have caused extensive attention to the commercial, scientific, and military development of unmanned surface vehicles (USVs). In order to design high-quality routes for a multi-sensor integrated USV, this work improves the conventional particle swarm optimization algorithm by introducing the greedy mechanism and the 2-opt operation, based on a combination strategy. First, a greedy black box is established for particle initialization, overcoming the randomness of the conventional method and excluding a great number of infeasible solutions. Then the greedy selection strategy and 2-opt operation are adopted together for local searches, to maintain population diversity and eliminate path crossovers. In addition, Monte-Carlo simulations of eight instances are conducted to compare the improved algorithm with other existing algorithms. The computation results indicate that the improved algorithm has the superior performance, with the shortest route and satisfactory robustness, although a fraction of computing efficiency becomes sacrificed. Moreover, the effectiveness and reliability of the improved method is also verified by its multi-sensor-based application to a USV model in real marine environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.