The observation of low-energy edge photoluminescence and its beneficial effect on the solar cell efficiency of Ruddlesden−Popper perovskites has unleashed an intensive research effort to reveal its origin. This effort, however, has been met with more challenges as the underlying material structure has still not been identified; new modelings and observations also do not seem to converge. Using twodimensional (2D) (BA) 2 (MA) 2 Pb 3 Br 10 as an example, we show that threedimensional (3D) MAPbBr 3 is formed due to the loss of BA on the edge. This self-formed MAPbBr 3 can explain the reported edge emission under various conditions, while the reported intriguing optoelectronic properties such as fast exciton trapping from the interior 2D perovskite, rapid exciton dissociation, and long carrier lifetime can be understood via the self-formed 2D/3D lateral perovskite heterostructure. The 3D perovskite is identified by submicron infrared spectroscopy, the emergence of X-ray diffraction (XRD) signature from freezer-milled nanometer-sized 2D perovskite, and its photoluminescence response to external hydrostatic pressure. The revelation of this edge emission mystery and the identification of a self-formed 2D/3D heterostructure provide a new approach to engineering 2D perovskites for high-performance optoelectronic devices.
Air pollution episodes in China are frequent and a more comprehensive understanding of pollution sources and impacts is needed to design appropriate strategies and set emission reduction targets. This study analyzes PM2.5 and PM10 concentrations measured in 23 cities at 178 urban sites and at 23 corresponding “urban contrast” sites in China with the goals of understanding spatial and temporal trends and quantifying the regional component of PM pollution. The contrast sites, located an average of 29 km from cities in the upwind direction, are intended to represent “background” levels. Using daily measurements from April 2013 to March 2014, we assess compliance with air quality standards, PM2.5/PM10 ratios and urban “increments,” defined as the increase in PM levels in the city compared to the contrast site. Spatial and temporal patterns at daily, monthly and annual levels are shown using distributions, correlations, spatial autocorrelation, and factor analyses. At the contrast sites, PM2.5 and PM10 concentrations averaged 56 ± 26 and 91 ± 44 μg m−3, respectively, and China’s daily and annual average air quality standards were frequently exceeded. PM2.5 and PM10 concentrations in most cities exceeded levels at the corresponding contrast sites, but by an average of only 14 ± 14 and 26 ± 27 μg m−3, respectively. Seasonal changes in PM2.5 and PM10 concentrations and urban increments were striking, e.g., levels increased 2 to 3-fold in winter at several sites. The significance of exurban and regional sources of PM2.5 is demonstrated by the small urban increments, the strong correlations across broad regions, and the correlation between daily levels at city and contrast sites. These sources will require control to achieve air quality goals, in particular, the PM10 and PM2.5 targets announced by the Chinese government in 2013.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.