Influenza is a major respiratory viral disease caused by infections from the influenza A virus (IAV) that persists across various seasonal outbreaks globally each year. Host immune response is a key factor determining disease severity of influenza infection, presenting an attractive target for the development of novel therapies for treatments. Among the multiple signal transduction pathways regulating the host immune activation and function in response to IAV infections, the mitogen-activated protein kinase (MAPK) pathways are important signalling axes, downstream of various pattern recognition receptors (PRRs), activated by IAVs that regulate various cellular processes in immune cells of both innate and adaptive immunity. Moreover, aberrant MAPK activation underpins overexuberant production of inflammatory mediators, promoting the development of the “cytokine storm”, a characteristic of severe respiratory viral diseases. Therefore, elucidation of the regulatory roles of MAPK in immune responses against IAVs is not only essential for understanding the pathogenesis of severe influenza, but also critical for developing MAPK-dependent therapies for treatment of respiratory viral diseases. In this review, we will summarise the current understanding of MAPK functions in both innate and adaptive immune response against IAVs and discuss their contributions towards the cytokine storm caused by highly pathogenic influenza viruses.
Purpose The purpose of this paper is to study the variation of the mechanical strength and failure modes of solder balls with reducing diameters under conditions of multiple reflows. Design/methodology/approach The solder balls with diameters from 250 to 760 µm were mounted on the copper-clad laminate by 1-5 reflows. The strength of the solder balls was tested by the single ball shear test and pull test, respectively. The failure modes of tested samples were identified by combing morphologies of fracture surfaces and force-displacement curves. The stresses were revealed and the failure explanations were assisted by the finite element analysis for the shear test of single solder ball. Findings The average strength of a smaller solder ball (e.g. 250 µm in diameter) is higher than that of a larger one (e.g. 760 µm in diameter). The strength of smaller solder balls is more highly variable with multiple reflows than larger diameters balls, where the strength increased mostly with the number of reflows. According to load-displacement curves or fracture surface morphologies, the failure modes of solder ball in the shear and pull tests can be categorized into three kinds. Originality/value The strength of solder balls will not deteriorate when the diameter of solder ball is decreased with a reflow, but a smaller solder ball has a higher failure risk after multiple reflows. The failure modes for shear and pull tests can be identified quickly by the combination of force-displacement curves and the morphologies of fracture surfaces.
An aluminized coating can improve the high-temperature oxidation resistance of turbine blades, but the inter-diffusion of elements renders the coating’s thickness difficult to achieve in non-destructive testing. As a typical method for coating thickness inspection, X-ray fluorescence mainly includes the fundamental parameter method and the empirical coefficient method. The fundamental parameter method has low accuracy for such complex coatings, while it is difficult to provide sufficient reference samples for the empirical coefficient method. To achieve accurate non-destructive testing of aluminized coating thickness, we analyzed the coating system of aluminized blades, simulated the spectra of reference samples using the open-source software XMI-MSIM, established the mapping between elemental spectral intensity and coating thickness based on partial least squares and back-propagation neural networks, and validated the model with actual samples. The experimental results show that the model’s prediction error based on the back-propagation neural network is 4.45% for the Al-rich layer and 16.89% for the Al-poor layer. Therefore, the model is more suitable for predicting aluminized coating thickness. Furthermore, the Monte Carlo simulation method can provide a new way of thinking for materials that have difficulty in fabricating reference samples.
Diffusion aluminum coating is crucial to protect aero-engine turbine blades from high-temperature oxidation. Slurry aluminizing, as a commonly-used coating preparation technology, has variations in the process parameters that directly affect the quality of the coating. Therefore, this paper investigates the effect of slurry thickness on coating quality. Different forms of aluminized coatings were obtained by coating nine DZ22B nickel-based superalloy plates of the same size with different slurry thicknesses while keeping other parameters constant. These aluminized coatings were characterized using a scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS), an X-ray diffractometer (XRD), and a surface gauge. The results show that the AlNi phase dominates the matrix of the aluminized coating, and the outer layer of the coating has white dotted precipitates of Cr. As the slurry thickness increases, the coating thickness increases, and the proportion of the outer layer in the overall coating increases. In contrast, the thickness of the interdiffusion layer does not change significantly. The thicker the slurry, the higher the Al content of the coating surface. A medium-thickness slurry can form a smooth aluminizing coating with a roughness Ra < 4.5 μm surface. The combined results show that a medium-thick slurry can produce a high-quality coating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.